Acknowledgments

Intel®, Itanium®, Pentium®, Intel Inside®, and the Intel Inside logo are trademarks of Intel Corporation in the United States and other countries.

Microsoft® and Windows® are trademarks of the Microsoft group of companies.

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Java and Oracle are registered trademarks of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.
Contents

Setting up an IRF fabric ... 1

Overview ... 1
Network topology .. 2
Basic concepts ... 2
Interface naming conventions ... 4
File system naming conventions ... 4
Configuration synchronization .. 5
Loop elimination mechanism ... 5
Master election ... 6
Multi-active handling procedure .. 6
MAD mechanisms ... 7
Hardware compatibility ... 12
General restrictions and configuration guidelines 12
Software requirements .. 12
IRF physical interface requirements .. 12
Connecting IRF ports .. 13
Feature compatibility and configuration restrictions 13
Configuration backup .. 14
Setup and configuration task list ... 14
Planning the IRF fabric setup ... 15
Assigning a member ID to each IRF member device 15
Specifying a priority for each member device 16
Connecting IRF physical interfaces ... 16
Binding physical interfaces to IRF ports ... 17
Configuration restrictions and guidelines 17
Configuration procedure .. 18
Accessing the IRF fabric ... 19
Bulk-configuring basic IRF settings for a member device 20
Configuring a member device description 20
Configuring IRF link load sharing mode ... 21
Configuring the global load sharing mode 21
Configuring a port-specific load sharing mode 21
Configuring the IRF bridge MAC address 22
Configuration restrictions and guidelines 22
Specifying a MAC address as the IRF bridge MAC address 22
Configuring IRF bridge MAC persistence 23
Enabling software auto-update for software image synchronization .. 24
Configuration prerequisites ... 24
Configuration procedure .. 24
Setting the IRF link down report delay .. 24
Configuring MAD ... 25
Configuring LACP MAD ... 26
Configuring BFD MAD ... 27
Configuring ARP MAD ... 29
Configuring ND MAD ... 31
Excluding a port or interface from the shutdown action upon detection of multi-active collision 32
Recovering an IRF fabric ... 32
Removing an expansion interface card that has IRF physical interfaces 34
Replacing an expansion interface card that has IRF physical interfaces 34
Displaying and maintaining an IRF fabric 34
Configuration examples .. 35
LACP MAD-enabled IRF configuration example 35
BFD MAD-enabled IRF configuration example 39
ARP MAD-enabled IRF configuration example 43
ND MAD-enabled IRF configuration example 47
Setting up an IRF fabric

Overview

The Intelligent Resilient Framework (IRF) technology virtualizes multiple physical devices at the same layer into one virtual fabric to provide data center class availability and scalability. IRF virtualization technology offers processing power, interaction, unified management, and uninterrupted maintenance of multiple devices.

Figure 1 shows an IRF fabric that has two devices, which appear as a single node to the upper-layer and lower-layer devices.

Figure 1 IRF application scenario

IRF provides the following benefits:

- **Simplified topology and easy management**—An IRF fabric appears as one node and is accessible at a single IP address on the network. You can use this IP address to log in at any member device to manage all the members of the IRF fabric. In addition, you do not need to run the spanning tree feature among the IRF members.

- **1:N redundancy**—In an IRF fabric, one member acts as the master to manage and control the entire IRF fabric. All the other members process services while backing up the master. When the master fails, all the other member devices elect a new master from among them to take over without interrupting services.

- **IRF link aggregation**—You can assign several physical links between neighboring members to their IRF ports to create a load-balanced aggregate IRF connection with redundancy.

- **Multichassis link aggregation**—You can use the Ethernet link aggregation feature to aggregate the physical links between the IRF fabric and its upstream or downstream devices across the IRF members.

- **Network scalability and resiliency**—Processing capacity of an IRF fabric equals the total processing capacities of all the members. You can increase ports, network bandwidth, and processing capacity of an IRF fabric simply by adding member devices without changing the network topology.
Network topology

An IRF fabric can use a daisy-chain or ring topology. IRF does not support the full mesh topology. For information about connecting IRF member devices, see “Connecting IRF physical interfaces.”

Basic concepts

IRF member roles

IRF uses two member roles: master and standby (called subordinate throughout the documentation). When devices form an IRF fabric, they elect a master to manage and control the IRF fabric, and all the other devices back up the master. When the master device fails, the other devices automatically elect a new master. For more information about master election, see "Master election."

IRF member ID

An IRF fabric uses member IDs to uniquely identify and manage its members. This member ID information is included as the first part of interface numbers and file paths to uniquely identify interfaces and files in an IRF fabric. For more information about interface and file path naming, see "Interface naming conventions" and "File system naming conventions."

Two devices cannot form an IRF fabric if they use the same member ID. A device cannot join an IRF fabric if its member ID has been used in the fabric.

IRF port

An IRF port is a logical interface that connects IRF member devices. Every IRF-capable device has two IRF ports. The IRF ports are named IRF-port n/1 and IRF-port n/2, where n is the member ID of the switch. The two IRF ports are referred to as IRF-port 1 and IRF-port 2 in this book.

To use an IRF port, you must bind a minimum of one physical interface to it. The physical interfaces assigned to an IRF port automatically form an aggregate IRF link. An IRF port goes down when all its IRF physical interfaces are down.

IRF physical interface

IRF physical interfaces connect IRF member devices and must be bound to an IRF port. They forward traffic between member devices, including IRF protocol packets and data packets that must travel across IRF member devices.

For more information about physical interfaces that can be used for IRF links, see "IRF physical interface requirements."

MAD

An IRF link failure causes an IRF fabric to split in two IRF fabrics operating with the same Layer 3 settings, including the same IP address. To avoid IP address collision and network problems, IRF uses multi-active detection (MAD) mechanisms to detect the presence of multiple identical IRF fabrics, handle collisions, and recover from faults.

IRF domain ID

One IRF fabric forms one IRF domain. IRF uses IRF domain IDs to uniquely identify IRF fabrics and prevent IRF fabrics from interfering with one another.

As shown in Figure 2, IRF fabric 1 contains Device A and Device B, and IRF fabric 2 contains Device C and Device D. Both fabrics use the LACP aggregate links between them for MAD. When a member device receives an extended LACPDU for MAD, it checks the domain ID to see whether the packet is from the local IRF fabric. Then, the device can handle the packet correctly.
IRF split

IRF split occurs when an IRF fabric breaks up into multiple IRF fabrics because of IRF link failures, as shown in Figure 3. The split IRF fabrics operate with the same IP address. IRF split causes routing and forwarding problems on the network. To quickly detect a multi-active collision, configure a minimum of one MAD mechanism (see “Configuring MAD”).

Figure 3 IRF split

IRF merge

IRF merge occurs when two split IRF fabrics reunite or when two independent IRF fabrics are united, as shown in Figure 4.

Figure 4 IRF merge
Member priority

Member priority determines the possibility of a member device to be elected the master. A member with higher priority is more likely to be elected the master.

Interface naming conventions

An interface is named in the \texttt{chassis-id/slot-number/port-index} format.

- \texttt{chassis-id}—IRF member ID of the device. This argument defaults to 1. The IRF member ID always takes effect, whether or not the device has formed an IRF fabric with other devices. If the device is alone, the device is regarded a one-chassis IRF fabric.
- \texttt{slot-number}—Slot number of the front panel. This argument is fixed at 0.
- \texttt{port-index}—Index of the port on the device. Port index depends on the number of ports available on the device. To identify the index of a port, examine its port index mark on the chassis.

For example:

- On the single-chassis IRF fabric \texttt{Sysname}, Ten-GigabitEthernet 1/0/1 represents the first fixed port on the device. Set its link type to trunk, as follows:

  ```
  <Sysname> system-view
  [Sysname] interface ten-gigabitethernet 1/0/1
  [Sysname-Ten-GigabitEthernet1/0/1] port link-type trunk
  ```

- On the multi-chassis IRF fabric \texttt{Master}, Ten-GigabitEthernet 3/0/1 represents the first fixed port on member device 3. Set its link type to trunk, as follows:

  ```
  <Master> system-view
  [Master] interface ten-gigabitethernet 3/0/1
  [Master-Ten-GigabitEthernet3/0/1] port link-type trunk
  ```

File system naming conventions

On a single-chassis fabric, you can use its storage device name to access its file system.

On a multichassis IRF fabric, you can use the storage device name to access the file system of the master. To access the file system of any other member device, use the name in the \texttt{slotmember-ID#storage-device-name} format.

For example:

To access the \texttt{test} folder under the root directory of the flash memory on the master device:

```
<Master> mkdir test
Creating directory flash:/test... Done.
<Master> dir
Directory of flash:
  0 -rw- 43548660 Jan 01 2011 08:21:29   system.ipe
  1 drw- - Jan 01 2011 00:00:30   diagfile
  2 -rw- 567 Jan 02 2011 01:41:54   dsakey
  3 -rw- 735 Jan 02 2011 01:42:03   hostkey
  4 -rw- 36 Jan 01 2011 00:07:52   ifindex.dat
  5 -rw- 0 Jan 01 2011 00:53:09   lauth.dat
  6 drw- - Jan 01 2011 06:33:55   log
  7 drw- - Jan 02 2000 00:00:07   logfile
  8 -rw- 23724032 Jan 01 2011 00:49:47 switch-cmw710-system.bin
  9 drw- - Jan 01 2000 00:00:07   seclog
```
To create and access the **test** folder under the root directory of the flash memory on member device 3:

```bash
<Master> mkdir slot3#flash:/test
Creating directory slot3#flash:/test... Done.
<Master> cd slot3#flash:/test
```

Or:

```bash
<Master> cd slot3#flash:/
<Master> mkdir test
Creating directory slot3#flash:/test... Done.
```

To copy the file **test.ipe** on the master to the root directory of the flash memory on member device 3:

```bash
# Display the current working path. In this example, the current working path is the root directory of
# the flash memory on member device 3.
<Master> pwd
slot3#flash:

# Change the current working path to the root directory of the flash memory on the master device.
<Master> cd flash:
```

```bash
# Copy the file to member device 3.
<Master> copy test.ipe slot3#flash:
Copy flash:/test.ipe to slot3#flash:/test.ipe?[Y/N]:y
Copying file flash:/test.ipe to slot3#flash:/test.ipe... Done.
```

For more information about storage device naming conventions, see *Fundamentals Configuration Guide*.

Configuration synchronization

IRF uses a strict running-configuration synchronization mechanism. In an IRF fabric, all devices obtain and run the running configuration of the master. Configuration changes are automatically propagated from the master to the remaining devices. The configuration files of these devices are retained, but the files do not take effect. The devices use their own startup configuration files only after they are removed from the IRF fabric.

For more information about configuration management, see *Fundamentals Configuration Guide*.

Loop elimination mechanism

Loop control protocols such as the spanning tree feature cannot be configured on IRF physical interfaces. However, IRF has its own mechanism to eliminate loops. Before an IRF member device
forwards a packet, it identifies whether loops exist on the forwarding path based on the source and
destination physical interfaces and the IRF topology. If a loop exists, the device discards the packet
on the source interface of the looped path. This loop elimination mechanism will drop a large number
of broadcast packets on the IRF physical interfaces. When you use SNMP tools, do not monitor
packet forwarding on the IRF physical interfaces to reduce SNMP notifications of packet drops.

Master election

Master election occurs each time the IRF fabric topology changes in the following situations:

- The IRF fabric is established.
- The master device fails or is removed.
- The IRF fabric splits.
- Independent IRF fabrics merge.

NOTE:
Master election does not occur when two split IRF fabrics merge. All member devices in the
Recovery-state IRF fabric reboot to join the active IRF fabric as subordinate members. The master
device of the active IRF fabric is the master device of the merged IRF fabric.

Master election selects a master in descending order:

1. Current master, even if a new member has higher priority.
 - When an IRF fabric is being formed, all members consider themselves as the master. This rule
 is skipped.
2. Member with higher priority.
3. Member with the longest system uptime.
 - Two members are considered to start up at the same time if the difference between their startup
 times is equal to or less than 10 minutes. For these members, the next tiebreaker applies.
4. Member with the lowest CPU MAC address.

For the setup of a new IRF fabric, the subordinate devices must reboot to complete the setup after
the master election.

For an IRF merge, devices must reboot if they are in the IRF fabric that fails the master election.

NOTE:
When an IRF fabric reboots, its member devices might finish startup not at the same time because of
heterogeneity in device model or in expansion interface card number or model. If the member device
that first finishes startup does not detect any member device within the IRF configuration detect
time, the member device becomes the master regardless of its priority. Other member devices
become the subordinate devices to join the IRF fabric.

Multi-active handling procedure

The multi-active handling procedure includes detection, collision handling, and failure recovery.

Detection

MAD identifies each IRF fabric with a domain ID and an active ID (the member ID of the master). If
multiple active IDs are detected in a domain, MAD determines that an IRF collision or split has
occurred.

For more information about the MAD mechanisms and their application scenarios, see "MAD
mechanisms."
Collision handling

When MAD detects a multi-active collision, it sets all IRF fabrics except one to the Recovery state. The fabric that is not placed in Recovery state can continue to forward traffic. The Recovery-state IRF fabrics are inactive and cannot forward traffic.

LACP MAD and BFD MAD use the following process to handle a multi-active collision:
1. Compare the number of members in each fabric.
2. Set all fabrics to the Recovery state except the one that has the most members.
3. Compare the member IDs of the masters if all IRF fabrics have the same number of members.
4. Set all fabrics to the Recovery state except the one that has the lowest numbered master.
5. Shut down all network ports and interfaces in the Recovery-state fabrics except for the following ports and interfaces:
 - IRF physical interfaces.
 - Ports and interfaces you have specified with the `mad exclude interface` command.

In contrast, ARP MAD and ND MAD do not compare the number of members in fabrics. These MAD mechanisms use the following process to handle a multi-active collision:
1. Compare the member IDs of the masters in the IRF fabrics.
2. Set all fabrics to the Recovery state except the one that has the lowest numbered master.
3. Take the same action on the network ports and interfaces in Recovery-state fabrics as LACP MAD and BFD MAD.

Failure recovery

To merge two split IRF fabrics, first repair the failed IRF link and remove the IRF link failure.
- If the IRF fabric in Recovery state fails before the failure is recovered, repair the failed IRF fabric and the failed IRF link.
- If the active IRF fabric fails before the failure is recovered, enable the inactive IRF fabric to take over the active IRF fabric. Then, recover the MAD failure.

MAD mechanisms

IRF provides MAD mechanisms by extending LACP, BFD, ARP, and IPv6 ND. You can configure a minimum of one MAD mechanism on an IRF fabric for prompt IRF split detection.
- Do not configure LACP MAD together with ARP MAD or ND MAD, because they handle collisions differently.
- Do not configure BFD MAD together with ARP MAD or ND MAD. BFD MAD is mutually exclusive with the spanning tree feature, but ARP MAD and ND MAD require the spanning tree feature. At the same time, BFD MAD handles collisions differently than ARP MAD and ND MAD.

Table 1 compares the MAD mechanisms and their application scenarios.

Table 1 Comparison of MAD mechanisms

<table>
<thead>
<tr>
<th>MAD mechanism</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Application scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACP MAD</td>
<td>• Detection speed is fast.</td>
<td>Requires an intermediate device that supports extended LACP for MAD.</td>
<td>Link aggregation is used between the IRF fabric and its upstream or downstream device. For information about LACP, see Layer 2—LAN Switching Configuration Guide.</td>
</tr>
<tr>
<td>MAD mechanism</td>
<td>Advantages</td>
<td>Disadvantages</td>
<td>Application scenario</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| **BFD MAD** | • Detection speed is fast.
• No intermediate device is required.
• Intermediate device, if used, can come from any vendor. | • Requires MAD dedicated physical links and Layer 3 interfaces, which cannot be used for transmitting user traffic.
• If no intermediate device is used, any two IRF members must have a BFD MAD link to each other.
• If an intermediate device is used, every IRF member must have a BFD MAD link to the intermediate device. | • No special requirements for network scenarios.
• If no intermediate device is used, this mechanism is only suitable for IRF fabrics that have a small number of members that are geographically close to one another.
For information about BFD, see High Availability Configuration Guide. |
| **ARP MAD** | • No intermediate device is required.
• Intermediate device, if used, can come from any vendor.
• Does not require MAD dedicated ports. | • Detection speed is slower than BFD MAD and LACP MAD.
• The spanning tree feature must be enabled if common Ethernet ports are used for ARP MAD links. | If common Ethernet ports are used, this MAD mechanism is applicable only to the spanning tree-enabled non-link aggregation IPv4 network scenario.
For information about ARP, see Layer 3—IP Services Configuration Guide. |
| **ND MAD** | • No intermediate device is required.
• Intermediate device, if used, can come from any vendor.
• Does not require MAD dedicated ports. | • Detection speed is slower than BFD MAD and LACP MAD.
• The spanning tree feature must be enabled. | Spanning tree-enabled non-link aggregation IPv6 network scenario.
For information about ND, see Layer 3—IP Services Configuration Guide. |

LACP MAD

As shown in Figure 5, LACP MAD has the following requirements:

- Every IRF member must have a link with an intermediate device.
- All the links form a dynamic link aggregation group.
- The intermediate device must be a device that supports extended LACP for MAD.

The IRF member devices send extended LACPDUs that convey a domain ID and an active ID. The intermediate device transparently forwards the extended LACPDUs received from one member device to all the other member devices.

- If the domain IDs and active IDs sent by all the member devices are the same, the IRF fabric is integrated.
- If the extended LACPDUs convey the same domain ID but different active IDs, a split has occurred. LACP MAD handles this situation as described in "Collision handling."
BFD MAD

You can use common or management Ethernet ports for BFD MAD links.

- If management Ethernet ports are used, BFD MAD must work with an intermediate device. Make sure the following requirements are met:
 - Each IRF member device has a BFD MAD link to an intermediate device.
 - Each member device is assigned a MAD IP address on the master's management Ethernet port.
- If common Ethernet ports are used, BFD MAD has the following requirements:
 - Each member device has a BFD MAD link to an intermediate device, or all member devices have a BFD MAD link to each other.
 - As a best practice, use an intermediate device to connect IRF member devices if the IRF fabric has more than two member devices. A full mesh of IRF members might cause broadcast loops.
 - Each member device is assigned a MAD IP address on a VLAN interface.

The BFD MAD links must be dedicated. Do not use BFD MAD links for any other purposes.

NOTE:

- The MAD addresses identify the member devices and must belong to the same subnet.
- Of all management Ethernet ports on an IRF fabric, only the master's management Ethernet port is accessible.
Figure 6 shows a typical BFD MAD scenario that uses an intermediate device. Figure 7 shows a typical BFD MAD scenario that does not use an intermediate device.

BFD MAD, the master attempts to establish BFD sessions with other member devices by using its MAD IP address as the source IP address.

- If the IRF fabric is integrated, only the MAD IP address of the master takes effect. The master cannot establish a BFD session with any other member. If you execute the `display bfd session` command, the state of the BFD sessions is Down.
- When the IRF fabric splits, the IP addresses of the masters in the split IRF fabrics take effect. The masters can establish a BFD session. If you execute the `display bfd session` command, the state of the BFD session between the two devices is Up.

Figure 6 BFD MAD scenario with an intermediate device

![Figure 6 BFD MAD scenario with an intermediate device](image)

Figure 7 BFD MAD scenario without an intermediate device

![Figure 7 BFD MAD scenario without an intermediate device](image)

ARP MAD

ARP MAD detects multi-active collisions by using extended ARP packets that convey the IRF domain ID and the active ID.

You can use common or management Ethernet ports for ARP MAD.

- If management Ethernet ports are used, ARP MAD must work with an intermediate device. Make sure the following requirements are met:
 - Connect the management Ethernet port on each member device to the intermediate device.
 - On the intermediate device, you must assign the ports used for ARP MAD to the same VLAN.
- If common Ethernet ports are used, ARP MAD can work with or without an intermediate device. Make sure the following requirements are met:
 - If an intermediate device is used, connect each IRF member device to the intermediate device. Run the spanning tree feature between the IRF fabric and the intermediate device. In this situation, data links can be used.
 - If an intermediate device is not used, connect each IRF member device to all other member devices. In this situation, IRF links cannot be used for ARP MAD.
Figure 8 shows a typical ARP MAD scenario that uses an intermediate device. Each IRF member compares the domain ID and the active ID in incoming extended ARP packets with its domain ID and active ID.

- If the domain IDs are different, the extended ARP packet is from a different IRF fabric. The device does not continue to process the packet with the MAD mechanism.
- If the domain IDs are the same, the device compares the active IDs.
 - If the active IDs are different, the IRF fabric has split.
 - If the active IDs are the same, the IRF fabric is integrated.

ND MAD

ND MAD detects multi-active collisions by using NS packets to transmit the IRF domain ID and the active ID.

You can set up ND MAD links between neighbor IRF member devices or between each IRF member device and an intermediate device (see Figure 9). If an intermediate device is used, you must also run the spanning tree protocol between the IRF fabric and the intermediate device.

Each IRF member device compares the domain ID and the active ID in incoming NS packets with its domain ID and active ID.

- If the domain IDs are different, the NS packet is from a different IRF fabric. The device does not continue to process the packet with the MAD mechanism.
- If the domain IDs are the same, the device compares the active IDs.
 - If the active IDs are different, the IRF fabric has split.
 - If the active IDs are the same, the IRF fabric is integrated.
Hardware compatibility

An HPE FlexFabric 5940 switch can form an IRF fabric only with devices in the same series.

General restrictions and configuration guidelines

For a successful IRF setup, follow the restrictions and guidelines in this section and the setup procedure in "Setup and configuration task list."

Software requirements

All IRF member devices must run the same software image version. Make sure the software auto-update feature is enabled on all member devices.

IRF physical interface requirements

Candidate IRF physical interfaces

Use the following ports on the HPE FlexFabric 5940 switch for IRF links:

- 10GBase-T Ethernet ports.
- SFP+ ports.
- QSFP+ ports.
• QSFP28 ports.

Selecting transceiver modules and cables

When you select transceiver modules and cables, follow these restrictions and guidelines:

• Use Category 6A (or above) twisted-pair cables to connect 10GBase-T Ethernet ports in a short distance.

• Use SFP+, QSFP+, or QSFP28 transceiver modules and fibers to connect SFP+, QSFP+, or QSFP28 ports for a long-distance connection.

• Use SFP+, QSFP+, QSFP+ to SFP+, or QSFP28 DAC cables to connect SFP+, QSFP+, or QSFP28 ports for a short-distance connection.

• The transceiver modules at the two ends of an IRF link must be the same type.

For more information about the transceiver modules and DAC cables, see the switch installation guide and *HPE Comware-Based Devices Transceiver Modules User Guide*.

NOTE:

The transceiver modules and DAC cables available for the switch are subject to change over time. For the most up-to-date list of transceiver modules and DAC cables, contact your Hewlett Packard Enterprise sales representative.

Connecting IRF ports

When you connect two neighboring IRF members, connect the physical interfaces of IRF-port 1 on one member to the physical interfaces of IRF-port 2 on the other.

Feature compatibility and configuration restrictions

Make sure the feature settings in Table 2 are the same across member devices.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced ECMP mode</td>
<td><code>ecmp mode enhanced</code></td>
<td>See Layer 3—IP Routing Configuration Guide.</td>
</tr>
<tr>
<td>Maximum number of ECMP routes</td>
<td><code>max-ecmp-num</code></td>
<td>See Layer 3—IP Routing Configuration Guide.</td>
</tr>
<tr>
<td>Table capacity mode</td>
<td><code>switch-mode</code></td>
<td>See Fundamentals Configuration Guide.</td>
</tr>
<tr>
<td>Support for the IPv6 routes with prefixes longer than 64 bits</td>
<td><code>switch-routing-mode</code> <code>ipv6-128</code></td>
<td>See Layer 3—IP Routing Configuration Guide.</td>
</tr>
<tr>
<td>System operating mode</td>
<td><code>system-working-mode</code></td>
<td>See Fundamentals Configuration Guide.</td>
</tr>
<tr>
<td>VXLAN hardware resource allocation mode</td>
<td><code>hardware-resource vxlan</code></td>
<td>See VXLAN Configuration Guide.</td>
</tr>
</tbody>
</table>
Configuration backup

As a best practice, back up the next-startup configuration file on a device before adding the device to an IRF fabric as a subordinate.

A subordinate device's next-startup configuration file might be overwritten if the master and the subordinate use the same file name for their next-startup configuration files. You can use the backup file to restore the original configuration after removing the subordinate from the IRF fabric.

Setup and configuration task list

To set up an IRF fabric:

<table>
<thead>
<tr>
<th>Tasks at a glance</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (Required.) Planning the IRF fabric setup</td>
<td>N/A</td>
</tr>
<tr>
<td>2. (Required.) Assigning a member ID to each IRF member device</td>
<td>Perform this task on each member device.</td>
</tr>
<tr>
<td>3. (Optional.) Specifying a priority for each member device</td>
<td>Perform this task on one or multiple member devices to affect the master election result.</td>
</tr>
<tr>
<td>4. (Required.) Connecting IRF physical interfaces</td>
<td>N/A</td>
</tr>
<tr>
<td>5. (Required.) Binding physical interfaces to IRF ports</td>
<td>Perform this task on each member device. When you complete IRF port binding and activation on all IRF member devices, the IRF fabric is formed.</td>
</tr>
<tr>
<td>6. (Required.) Accessing the IRF fabric</td>
<td>When you log in to the IRF fabric, you are placed at the master's CLI, where you complete subsequent IRF settings and configure other features for the member devices as if they were one device.</td>
</tr>
<tr>
<td>7. (Optional.) Bulk-configuring basic IRF settings for a member device</td>
<td>Perform this task to bulk-configure the member ID, domain ID, priority, and IRF port bindings for a device.</td>
</tr>
<tr>
<td>8. (Optional.) Configuring a member device description</td>
<td>N/A</td>
</tr>
<tr>
<td>9. (Optional.) Configuring IRF link load sharing mode:</td>
<td>N/A</td>
</tr>
<tr>
<td>o Configuring the global load sharing mode</td>
<td></td>
</tr>
<tr>
<td>o Configuring a port-specific load sharing mode</td>
<td></td>
</tr>
<tr>
<td>10. (Optional.) Configuring the IRF bridge MAC address:</td>
<td>N/A</td>
</tr>
<tr>
<td>o Specifying a MAC address as the IRF bridge MAC address</td>
<td></td>
</tr>
<tr>
<td>o Configuring IRF bridge MAC persistence</td>
<td></td>
</tr>
<tr>
<td>11. (Optional.) Enabling software auto-update for software image synchronization</td>
<td>As a best practice, enable software auto-update to ensure system software image synchronization.</td>
</tr>
<tr>
<td>12. (Optional.) Setting the IRF link down report delay</td>
<td>N/A</td>
</tr>
<tr>
<td>13. (Required.) Configuring MAD:</td>
<td>MAD mechanisms are</td>
</tr>
</tbody>
</table>
Planning the IRF fabric setup

Consider the following items when you plan an IRF fabric:

- Hardware compatibility and restrictions.
- IRF fabric size.
- Master device.
- IRF physical interfaces.
- Member ID and priority assignment scheme.
- Fabric topology and cabling scheme.

For more information about hardware and cabling, see the device installation guide.

Assigning a member ID to each IRF member device

⚠️ **CAUTION:**

In an IRF fabric, changing IRF member IDs might cause undesirable configuration changes and data loss. Before you do that, back up the configuration, and make sure you fully understand the impact on your network. For example, all member switches in an IRF fabric are the same model. If you swapped the IDs of any two members, their interface settings would also be swapped.

To create an IRF fabric, you must assign a unique IRF member ID to each member device.

To prevent any undesirable configuration change or data loss, avoid changing member IDs after the IRF fabric is formed.

The new member ID takes effect at a reboot. After the device reboots, the settings on all member ID-related physical resources (including common physical network ports) are removed, regardless of whether you have saved the configuration.

To assign a member ID to a device:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>system-view</td>
</tr>
<tr>
<td>2.</td>
<td>Assign a member ID to a member device.</td>
<td>irf member member-id renumber new-member-id</td>
</tr>
<tr>
<td>Step</td>
<td>Command</td>
<td>Remarks</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>3. (Optional.) Save the configuration.</td>
<td>save</td>
<td>If you have bound physical interfaces to IRF ports or assigned member priority, you must perform this step for these settings to take effect after the reboot.</td>
</tr>
<tr>
<td>4. Reboot the device.</td>
<td>reboot [slot slot-number] [force]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Specifying a priority for each member device

IRF member priority represents the possibility for a device to be elected the master in an IRF fabric. A larger priority value indicates a higher priority.

A change to member priority affects the election result at the next master election, but it does not cause an immediate master re-election.

To specify a priority for a member device:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter system view.</td>
<td>system-view</td>
<td>N/A</td>
</tr>
<tr>
<td>2. Specify a priority for the device.</td>
<td>irf member member-id priority priority</td>
<td>The default IRF member priority is 1.</td>
</tr>
</tbody>
</table>

Connecting IRF physical interfaces

When you connect two neighboring IRF members, connect the physical interfaces of IRF-port 1 on one member to the physical interfaces of IRF-port 2 on the other (see Figure 10).

For example, you have four chassis: A, B, C, and D. IRF-port 1 and IRF-port 2 are represented by A1 and A2 on chassis A, represented by B1 and B2 on chassis B, and so on. To connect the four chassis into a ring topology of A-B-C-D(A), the IRF link cabling scheme must be one of the following:

- A2-B1, B2-C1, C2-D1, and D2-A1.

IMPORTANT:
No intermediate devices are allowed between neighboring members.

Figure 10 Connecting IRF physical interfaces

Connect the devices into a daisy-chain topology or a ring topology. A ring topology is more reliable (see Figure 11). In ring topology, the failure of one IRF link does not cause the IRF fabric to split as in
daisy-chain topology. Rather, the IRF fabric changes to a daisy-chain topology without interrupting network services.

Figure 11 Daisy-chain topology vs. ring topology

Binding physical interfaces to IRF ports

Configuration restrictions and guidelines

When you bind physical interfaces to IRF ports, follow the restrictions in "IRF physical interface requirements."

On a physical interface bound to an IRF port, you can execute only the following commands:

- **Interface commands:**
 - `description`.
 - `flow-interval`.
 - `priority-flow-control`.
 - `priority-flow-control no-drop dot1p`.
 - `shutdown`.

 For more information about these commands, see *Layer 2—LAN Switching Command Reference*.

- **LLDP commands:**
 - `lldp admin-status`.
 - `lldp check-change-interval`.
 - `lldp enable`.
 - `lldp encapsulation snap`.
 - `lldp notification remote-change enable`.
 - `lldp tlv-enable`.

 For more information about these commands, see *Layer 2—LAN Switching Command Reference*.

- **MAC address table configuration commands**, including the `mac-address static source-check enable` command. This command is available in Release 2509P02 and later.

When you configure IRF physical interfaces, follow these restrictions and guidelines:
• To ensure successful forwarding of Layer 3 traffic across member devices, use the **undo mac-address static source-check enable** command on each IRF physical interface. This command is available in Release 2509P02 and later. For information about this command, see **Layer 2—LAN Switching Command Reference**.

• When you execute the **port service-loopback group** command on an IRF physical interface, the binding between the physical interface and IRF port is removed. If an IRF port has only one IRF physical interface, do not assign the only IRF physical interface to a service loopback group to avoid IRF split. For information about the **port service-loopback group** command, see **Layer 2—LAN Switching Command Reference**.

• When you execute the **mirroring-group reflector-port** command on an IRF physical interface, the binding between the physical interface and IRF port is removed. If an IRF port has only one IRF physical interface, do not configure the only IRF physical interface as a reflector port to avoid IRF split. For information about the **mirroring-group reflector-port** command, see **Network Management and Monitoring Command Reference**.

Configuration procedure

To bind physical interfaces to IRF ports:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>system-view</td>
<td>N/A</td>
</tr>
</tbody>
</table>
| 2. | enter interface view or interface range view | - Enter interface range view:
 o Method 1:
 interface range
 { interface-type
 interface-number [to
 interface-type
 interface-number] } &<1-24>
 o Method 2:
 interface range name name
 [interface { interface-type
 interface-number [to
 interface-type
 interface-number] }
 &<1-24>]
 - Enter interface view:
 interface interface-type
 interface-number | To shut down a range of IRF physical interfaces, enter interface range view.
 To shut down one IRF physical interface, enter its interface view. |
| 3. | shutdown | By default, all physical interfaces are up. |
| 4. | quit | N/A |
| 5. | irf-port member-id irf-port-number | N/A |
| 6. | port group interface interface-type
 interface-number | By default, no physical interfaces are bound to an IRF port.
 Repeat this step to assign multiple physical interfaces to the IRF port.
 You can bind a maximum of eight physical interfaces to an IRF port. |
| 7. | quit | N/A |
| 8. | enter interface view or interface range view | - Enter interface range view:
 o Method 1: | N/A |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>Bring up the physical interfaces.</td>
<td>undo shutdown</td>
</tr>
<tr>
<td>10.</td>
<td>Return to system view.</td>
<td>quit</td>
</tr>
<tr>
<td>11.</td>
<td>Save the configuration.</td>
<td>save</td>
</tr>
<tr>
<td>12.</td>
<td>Activate the IRF port settings.</td>
<td>irf-port-configuration active</td>
</tr>
</tbody>
</table>

Accessing the IRF fabric

The IRF fabric appears as one device after it is formed. You configure and manage all IRF members at the CLI of the master. All settings you have made are propagated to the IRF members automatically.

The following methods are available for accessing an IRF fabric:

- **Local login**—Log in through the console port of any member device.
- **Remote login**—Log in at a Layer 3 interface on any member device by using methods including Telnet and SNMP.

When you log in to an IRF fabric, you are placed at the CLI of the master, regardless of at which member device you are logged in.

For more information, see login configuration in *Fundamentals Configuration Guide*.
Bulk-configuring basic IRF settings for a member device

IMPORTANT:

The member device reboots immediately after you specify a new member ID for it. Make sure you are aware of the impact on the network.

Use the easy IRF feature to bulk-configure basic IRF settings for a member device, including the member ID, domain ID, priority, and IRF port bindings.

The easy IRF feature provides the following configuration methods:

- **Interactive method**—Enter the `easy-irf` command without parameters. The system will guide you to set the parameters step by step.
- **Non-interactive method**—Enter the `easy-irf` command with parameters.

As a best practice, use the interactive method if you are new to IRF.

When you specify IRF physical interfaces for an IRF port, you must follow the IRF port binding restrictions in "IRF physical interface requirements."

If you specify IRF physical interfaces by using the interactive method, you must also follow these restrictions and guidelines:

- Do not enter spaces between the interface type and interface number.
- Use a comma (,) to separate two physical interfaces. No spaces are allowed between interfaces.

To bulk-configure basic IRF settings for a device:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>system-view</td>
</tr>
</tbody>
</table>
| 2. | Bulk-configure basic IRF settings for the device. | `easy-irf [member member-id [renumber new-member-id] domain domain-id [priority priority] [irf-port1 interface-list1] [irf-port2 interface-list2]]` | Make sure the new member ID is unique in the IRF fabric to which the device will be added. If you execute this command multiple times, the following settings take effect:
 - The most recent settings for the member ID, domain ID, and priority.
 - IRF port bindings added through executions of the command. You can bind a maximum of eight physical interfaces to an IRF port.
 To remove an IRF physical interface from an IRF port, you must use the `undo port group interface` command in IRF port view. |

Configuring a member device description

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>system-view</td>
</tr>
<tr>
<td>2.</td>
<td>Configure a description for</td>
<td><code>irf member member-id description</code></td>
</tr>
</tbody>
</table>
Configuring IRF link load sharing mode

On an IRF port, traffic is balanced across its physical links.

You can configure the IRF port to distribute traffic based on any combination of the following criteria:

- Source IP addresses.
- Destination IP addresses.
- Source MAC addresses.
- Destination MAC addresses.

The criteria can also be packet types, such as Layer 2, IPv4, and IPv6. If the device does not support a criterion combination, the system displays an error message.

Configure the IRF link load sharing mode for IRF links in system view or IRF port view:

- In system view, the configuration is global and takes effect on all IRF ports.
- In IRF port view, the configuration is port specific and takes effect only on the specified IRF port.

An IRF port preferentially uses the port-specific load sharing mode. If no port-specific load sharing mode is available, the IRF port uses the global load sharing mode.

The IRF link load sharing mode takes effect on all types of packets, including unicast, multicast, and broadcast.

Configuring the global load sharing mode

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>N/A</td>
</tr>
<tr>
<td>2.</td>
<td>Configure the global IRF link load sharing mode.</td>
<td>irf-port global load-sharing mode { destination-ip</td>
</tr>
</tbody>
</table>

Configuring a port-specific load sharing mode

Before you configure a port-specific load sharing mode, make sure you have bound a minimum of one physical interface to the IRF port.

To configure a port-specific load sharing mode for an IRF port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>system-view</td>
</tr>
<tr>
<td>2.</td>
<td>Enter IRF port view.</td>
<td>irf-port member-id</td>
</tr>
<tr>
<td>3.</td>
<td>Configure the port-specific load sharing mode.</td>
<td>irf-port load-sharing mode { destination-ip</td>
</tr>
</tbody>
</table>
Configuring the IRF bridge MAC address

⚠️ **CAUTION:**
The bridge MAC address change causes transient traffic disruption.

Use this feature to configure the bridge MAC address of an IRF fabric. Layer 2 protocols, such as LACP, use the IRF bridge MAC address to identify an IRF fabric. On a switched LAN, the bridge MAC address must be unique.

When IRF fabrics merge, IRF ignores the IRF bridge MAC address and checks the bridge MAC address of each member device in the IRF fabrics. IRF merge fails if any two member devices have the same bridge MAC address.

After IRF fabrics merge, the merged IRF fabric uses the bridge MAC address of the merging IRF fabric that won the master election as the IRF bridge MAC address.

The following methods are available to configure the IRF bridge MAC address for an IRF fabric:

- **Specifying a MAC address as the IRF bridge MAC address.**
 The IRF fabric always uses the specified MAC address as the IRF bridge MAC address.

- **Configuring IRF bridge MAC persistence.**
 This feature specifies the amount of time an IRF fabric can continue using a MAC address as the IRF bridge MAC address after the address owner leaves. By default, the bridge MAC address of the master device becomes the IRF bridge MAC address upon the setup of the IRF fabric.

Configuration restrictions and guidelines

When you configure the IRF bridge MAC address, follow these restrictions and guidelines:

- The IRF bridge MAC persistence feature does not take effect if you specify the IRF bridge MAC address by using the `irf mac-address mac-address` command.

- If ARP MAD or ND MAD is used, you must configure the `undo irf mac-address persistent` command and do not configure the `irf mac-address mac-address command`.

- If the IRF fabric has cross-member aggregate links, do not use the `undo irf mac-address persistent` command to avoid unnecessary traffic disruption.

- If the IRF fabric uses a daisy-chain topology and has aggregate links with upstream or downstream devices, do not configure the `undo irf mac-address persistent` command. Any violation results in transmission delay or packet loss after the address owner leaves or reboots.

Specifying a MAC address as the IRF bridge MAC address

You can specify the bridge MAC address of an existing IRF fabric for a new IRF fabric to replace the existing IRF fabric with transient packet loss.

To specify a MAC address as the IRF bridge MAC address:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><code>system-view</code></td>
<td>N/A</td>
</tr>
</tbody>
</table>
Configuring IRF bridge MAC persistence

Depending on the network condition, enable the IRF fabric to retain or change its bridge MAC address after the address owner leaves. Available options include:

- **irf mac-address persistent timer**—Bridge MAC address of the IRF fabric is retained for 6 minutes after the address owner leaves. If the address owner does not return before the timer expires, the IRF fabric uses the bridge MAC address of the current master as its bridge MAC address. This option avoids unnecessary bridge MAC address changes caused by device reboot, transient link failure, or purposeful link disconnection.

- **irf mac-address persistent always**—Bridge MAC address of the IRF fabric does not change after the address owner leaves.

- **undo irf mac-address persistent**—Bridge MAC address of the current master replaces the original IRF bridge MAC address as soon as the owner of the original address leaves.

To configure the IRF bridge MAC persistence setting:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enter system view.</td>
<td>system-view</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2. Configure IRF bridge MAC persistence. | • Retain the bridge MAC address even if the address owner has left the fabric: **irf mac-address persistent always**
 • Retain the bridge MAC address for 6 minutes after the address owner leaves the fabric: **irf mac-address persistent timer**
 • Change the bridge MAC address as soon as the address owner leaves the fabric: **undo irf mac-address persistent** | By default, the IRF bridge MAC address remains unchanged for 6 minutes after the address owner leaves the IRF fabric. |
Enabling software auto-update for software image synchronization

IMPORTANT:
To ensure a successful software auto-update in a multi-user environment, prevent anyone from rebooting member devices during the auto-update process. To inform administrators of the auto-update status, configure the information center to output the status messages to configuration terminals (see *Network Management and Monitoring Configuration Guide*).

The software auto-update feature automatically synchronizes the current software images of the master to devices that are attempting to join the IRF fabric.

To join an IRF fabric, a device must use the same software images as the master in the fabric.

When you add a device to the IRF fabric, software auto-update compares the startup software images of the device with the current software images of the IRF master. If the two sets of images are different, the device automatically performs the following operations:

1. Downloads the current software images of the master.
2. Sets the downloaded images as its main startup software images.
3. Reboots with the new software images to rejoin the IRF fabric.

You must manually update the new device with the software images running on the IRF fabric if software auto-update is disabled.

Configuration prerequisites

Make sure the device you are adding to the IRF fabric has sufficient storage space for the new software images.

If sufficient storage space is not available, the device automatically deletes the current software images. If the reclaimed space is still insufficient, the device cannot complete the auto-update. You must reboot the device, and then access the BootWare menus to delete files.

Configuration procedure

To enable automatic software synchronization with the master:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>system-view</td>
<td>N/A</td>
</tr>
<tr>
<td>2.</td>
<td>irf auto-update enable</td>
<td>By default, software auto-update is enabled.</td>
</tr>
</tbody>
</table>

Setting the IRF link down report delay

To prevent frequent IRF splits and merges during link flapping, configure the IRF ports to delay reporting link down events.

An IRF port does not report a link down event to the IRF fabric immediately after its link changes from up to down. If the IRF link state is still down when the delay is reached, the port reports the change to the IRF fabric.
An IRF port does not delay a link up event. It reports the link up event immediately after the IRF link comes up. However, for fiber IRF physical interfaces, the IRF port does not report the link up event immediately to the IRF fabric if the link up event occurs in the following conditions:

1. The IRF link was down because the physical interfaces were shut down by using the `shutdown` command or were disconnected.
2. The IRF link is recovered after you execute the `undo shutdown` command or reconnect the IRF physical interfaces.

In the above conditions, the IRF port reports the link up event to the IRF fabric after the delay time expires.

When you configure the IRF link down report delay, follow these restrictions and guidelines:

- Make sure the IRF link down report delay is shorter than the heartbeat or hello timeout settings of upper-layer protocols (for example, CFD, VRRP, and OSPF). If the report delay is longer than the timeout setting of a protocol, unnecessary recalculation might occur.

- Set the delay to 0 seconds in the following situations:
 o The IRF fabric requires a fast master/subordinate or IRF link switchover.
 o The BFD or GR feature is used.
 o You want to shut down an IRF physical interface or reboot an IRF member device. (After you complete the operation, reconfigure the delay depending on the network condition.)

To set the IRF link down report delay:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td><code>system-view</code></td>
</tr>
<tr>
<td>2.</td>
<td>Set the IRF link down report delay.</td>
<td><code>irf link-delay interval</code></td>
</tr>
</tbody>
</table>

Configuring MAD

When you configure MAD, follow these restrictions and guidelines:

- You can configure a minimum of one MAD mechanism on an IRF fabric for prompt IRF split detection.
 o Do not configure LACP MAD together with ARP MAD or ND MAD, because they handle collisions differently.
 o Do not configure BFD MAD together with ARP MAD or ND MAD. BFD MAD is mutually exclusive with the spanning tree feature, but ARP MAD and ND MAD require the spanning tree feature. At the same time, BFD MAD handles collisions differently than ARP MAD and ND MAD.
- If LACP MAD, ARP MAD, or ND MAD runs between two IRF fabrics, assign each fabric a unique IRF domain ID. (For BFD MAD, this task is optional.)
- An IRF fabric has only one IRF domain ID. You can change the IRF domain ID by using the following commands: `irf domain`, `mad enable`, `mad arp enable`, or `mad nd enable`. The IRF domain IDs configured by using these commands overwrite each other.
- To prevent a port or interface from being shut down when the IRF fabric transits to the Recovery state, use the `mad exclude interface` command. To bring up ports and interfaces in a Recovery-state IRF fabric, use the `mad restore` command instead of the `undo shutdown` command. The `mad restore` command activates the Recovery-state IRF fabric.
Configuring LACP MAD

When you use LACP MAD, follow these guidelines:

- The intermediate device must be a device that supports extended LACP for MAD.
- If the intermediate device is also an IRF fabric, assign the two IRF fabrics different domain IDs for correct split detection.
- Use dynamic link aggregation mode. MAD is LACP dependent. Even though LACP MAD can be configured on both static and dynamic aggregate interfaces, it takes effect only on dynamic aggregate interfaces.
- Configure link aggregation settings on the intermediate device.

To configure LACP MAD:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>system-view</td>
</tr>
<tr>
<td>2.</td>
<td>Assign a domain ID to the IRF fabric.</td>
<td>irf domain domain-id</td>
</tr>
</tbody>
</table>
| 3. | Create an aggregate interface and enter aggregate interface view. | - Enter Layer 2 aggregate interface view: `interface bridge-aggregation interface-number`
- Enter Layer 3 aggregate interface view: `interface route-aggregation interface-number` | Perform this step also on the intermediate device. |
| 4. | Configure the aggregation group to operate in dynamic aggregation mode. | link-aggregation mode dynamic | By default, an aggregation group operates in static aggregation mode. Perform this step also on the intermediate device. |
| 5. | Enable LACP MAD. | mad enable | By default, LACP MAD is disabled. |
| 6. | Return to system view. | quit | N/A |
| 7. | Enter Ethernet interface view or interface range view. | - Enter interface range view:
 - Method 1: `interface range`
 - Method 2: `interface range name name [interface`
 - Enter Ethernet interface view: `interface interface-type interface-number` | To assign a range of ports to the aggregation group, enter interface range view. To assign one port to the aggregation group, enter Ethernet interface view. |
| 8. | Assign the Ethernet port or the range of Ethernet ports to the specified aggregation | port link-aggregation group group-id | Multichassis link aggregation is allowed. |
Configuring BFD MAD

Before you configure BFD MAD, choose a BFD MAD link scheme as described in "BFD MAD."

As a best practice, connect the BFD MAD links after you finish the BFD MAD configuration.

Configuring BFD MAD that uses common Ethernet ports

Configure BFD MAD on a VLAN interface if you use common Ethernet ports for BFD MAD.

When you configure BFD MAD settings, follow these restrictions and guidelines:

<table>
<thead>
<tr>
<th>Category</th>
<th>Restrictions and guidelines</th>
</tr>
</thead>
</table>
| BFD MAD VLAN | • Do not enable BFD MAD on VLAN-interface 1.
• If you are using an intermediate device, perform the following tasks on both the IRF fabric and the intermediate device:
 o Create a VLAN and VLAN interface for BFD MAD.
 o Assign the ports of BFD MAD links to the BFD MAD VLAN.
• Make sure the IRF fabrics on the network use different BFD MAD VLANs.
• Make sure the BFD MAD VLAN contains only ports on the BFD MAD links. Exclude a port from the BFD MAD VLAN if the port is not on the BFD MAD link. For example, if you have assigned the port to all VLANs by using the `port trunk permit vlan all` command, use the `undo port trunk permit` command to exclude the port from the BFD MAD VLAN. |
| BFD MAD VLAN and feature compatibility | Do not use the BFD MAD VLAN for any purpose other than configuring BFD MAD.
• Configure only the `mad bfd enable` and `mad ip address` commands on the VLAN interface used for BFD MAD. If you configure other features, both BFD MAD and other features on the interface might run incorrectly.
• Disable the spanning tree feature on all Layer 2 Ethernet ports in the BFD MAD VLAN. The MAD feature is mutually exclusive with the spanning tree feature. |
| MAD IP address | • Use the `mad ip address` command instead of the `ip address` command to configure MAD IP addresses on the BFD MAD-enabled VLAN interface.
• Make sure all the MAD IP addresses are on the same subnet. |

To configure BFD MAD that uses common Ethernet ports:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>system-view</td>
</tr>
<tr>
<td>2.</td>
<td>(Optional.) Assign a domain ID to the IRF fabric.</td>
<td><code>irf domain domain-id</code></td>
</tr>
<tr>
<td>3.</td>
<td>Create a VLAN dedicated to BFD MAD.</td>
<td><code>vlan vlan-id</code></td>
</tr>
<tr>
<td>4.</td>
<td>Return to system view.</td>
<td><code>quit</code></td>
</tr>
</tbody>
</table>
| 5. | Enter interface view or interface range view. | `interface range { interface-type interface-number [to interface-type] }` | To assign a range of ports to the BFD MAD VLAN, enter interface range view.
To assign one port to the BFD MAD link using `interface interface-number`, enter interface view. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>Command</td>
<td>Remarks</td>
</tr>
<tr>
<td>1. Enter system view.</td>
<td>system-view</td>
<td>N/A</td>
</tr>
<tr>
<td>2. (Optional.) Assign a domain ID to the IRF fabric.</td>
<td>irf domain domain-id</td>
<td>By default, the domain ID of an IRF fabric is 0.</td>
</tr>
</tbody>
</table>

Configuring BFD MAD that uses management Ethernet ports

When you configure BFD MAD that uses management Ethernet ports, follow these restrictions and guidelines:

<table>
<thead>
<tr>
<th>Category</th>
<th>Restrictions and guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Ethernet ports for BFD MAD</td>
<td>Connect the management Ethernet port on each member device to the common Ethernet ports on the intermediate device.</td>
</tr>
</tbody>
</table>
| BFD MAD VLAN | • On the intermediate device, create a VLAN for BFD MAD, and assign the ports used for BFD MAD to the VLAN. On the IRF fabric, you do not need to assign the management Ethernet ports to the VLAN.
• Make sure the IRF fabrics on the network use different BFD MAD VLANS.
• Make sure the BFD MAD VLAN on the intermediate device contains only ports on the BFD MAD links. |
| MAD IP address | • Use the **mad ip address** command instead of the **ip address** command to configure MAD IP addresses on the BFD MAD-enabled management Ethernet ports.
• Make sure all the MAD IP addresses are on the same subnet. |

To configure BFD MAD that uses management Ethernet ports:
<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Enter management Ethernet interface view.</td>
<td>Of all management Ethernet ports on an IRF fabric, only the master's management Ethernet port is accessible.</td>
</tr>
<tr>
<td>4.</td>
<td>Enable BFD MAD.</td>
<td>By default, BFD MAD is disabled.</td>
</tr>
<tr>
<td>5.</td>
<td>Assign a MAD IP address to each member device.</td>
<td>By default, no MAD IP addresses are configured.</td>
</tr>
</tbody>
</table>

Configuring ARP MAD

Before you configure ARP MAD, choose an ARP MAD link scheme as described in "ARP MAD."

As a best practice, connect the ARP MAD links after you finish the ARP MAD configuration if you are not using existing data links as ARP MAD links.

Configuring ARP MAD that uses common Ethernet ports

Configure ARP MAD on a VLAN interface if you use common Ethernet ports for ARP MAD.

When you configure ARP MAD that uses common Ethernet ports, follow these restrictions and guidelines:

<table>
<thead>
<tr>
<th>Category</th>
<th>Restrictions and guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP MAD VLAN</td>
<td>• Do not enable ARP MAD on VLAN-interface 1.</td>
</tr>
<tr>
<td></td>
<td>• If you are using an intermediate device, perform the following tasks on both the IRF fabric and the intermediate device:</td>
</tr>
<tr>
<td></td>
<td>o Create a VLAN and VLAN interface for ARP MAD.</td>
</tr>
<tr>
<td></td>
<td>o Assign the ports of ARP MAD links to the ARP MAD VLAN.</td>
</tr>
<tr>
<td></td>
<td>• Do not use the ARP MAD VLAN for any other purposes.</td>
</tr>
<tr>
<td>ARP MAD and feature configuration</td>
<td>If an intermediate device is used, make sure the following requirements are met:</td>
</tr>
<tr>
<td></td>
<td>• Run the spanning tree feature between the IRF fabric and the intermediate device to ensure that there is only one ARP MAD link in forwarding state. For more information about the spanning tree feature and its configuration, see Layer 2—LAN Switching Configuration Guide.</td>
</tr>
<tr>
<td></td>
<td>• Enable the IRF fabric to change its bridge MAC address as soon as the address owner leaves.</td>
</tr>
<tr>
<td></td>
<td>• If the intermediate device is also an IRF fabric, assign the two IRF fabrics different domain IDs for correct split detection.</td>
</tr>
</tbody>
</table>

To configure ARP MAD that uses common Ethernet ports:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>system-view</td>
</tr>
<tr>
<td>2.</td>
<td>Assign a domain ID to the IRF fabric.</td>
<td>irf domain domain-id</td>
</tr>
<tr>
<td>3.</td>
<td>Configure the IRF bridge MAC address to change as soon as the address owner leaves.</td>
<td>undo irf mac-address persistent</td>
</tr>
<tr>
<td>4.</td>
<td>Create a VLAN dedicated to ARP MAD.</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td>Step</td>
<td>Command</td>
<td>Remarks</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>5.</td>
<td>Return to system view.</td>
<td>quit</td>
</tr>
<tr>
<td>6.</td>
<td>Enter Ethernet interface view.</td>
<td>interface interface-type interface-number</td>
</tr>
</tbody>
</table>
| 7. | Assign the port to the ARP MAD VLAN. | • Assign the port to the VLAN as an access port: port access vlan vlan-id
• Assign the port to the VLAN as a trunk port: port trunk permit vlan vlan-id
• Assign the port to the VLAN as a hybrid port: port hybrid vlan vlan-id { tagged | untagged } | The link type of ARP MAD ports can be access, trunk, or hybrid. The default link type of a port is access. |
| 8. | Return to system view. | quit | N/A | |
| 9. | Enter VLAN interface view. | interface vlan-interface vlan-interface-id | N/A |
| 10. | Assign the interface an IP address. | ip address ip-address { mask | mask-length } | By default, no IP addresses are assigned to a VLAN interface. |
| 11. | Enable ARP MAD. | mad arp enable | By default, ARP MAD is disabled. |

Configuring ARP MAD that uses management Ethernet ports

When you configure ARP MAD that uses management Ethernet ports, follow these restrictions and guidelines:

<table>
<thead>
<tr>
<th>Category</th>
<th>Restrictions and guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Ethernet ports for ARP MAD</td>
<td>Connect the management Ethernet port on each member device to the common Ethernet ports on the intermediate device.</td>
</tr>
<tr>
<td>ARP MAD VLAN</td>
<td>On the intermediate device, create a VLAN for ARP MAD, and assign the ports used for ARP MAD to the VLAN. On the IRF fabric, you do not need to assign the management Ethernet ports to the VLAN.</td>
</tr>
</tbody>
</table>
| ARP MAD and feature configuration | • Enable the IRF fabric to change its bridge MAC address as soon as the address owner leaves.
• If the intermediate device is also an IRF fabric, assign the two IRF fabrics different domain IDs for correct split detection. |

To configure ARP MAD that uses management Ethernet ports:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>system-view</td>
</tr>
<tr>
<td>2.</td>
<td>Assign a domain ID to the IRF fabric.</td>
<td>irf domain domain-id</td>
</tr>
<tr>
<td>3.</td>
<td>Configure the IRF bridge MAC address to change as soon as the address owner leaves.</td>
<td>undo irf mac-address persistent</td>
</tr>
<tr>
<td>4.</td>
<td>Enter management Ethernet interface view.</td>
<td>interface M-GigabitEthernet interface-number</td>
</tr>
</tbody>
</table>
Step 5
Assign an IP address to the management Ethernet ports.

<table>
<thead>
<tr>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>`ip address ip-address { mask</td>
<td>mask-length }`</td>
</tr>
</tbody>
</table>

Step 6
Enable ARP MAD.

<table>
<thead>
<tr>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mad arp enable</code></td>
<td>By default, ARP MAD is disabled.</td>
</tr>
</tbody>
</table>

Configuring ND MAD

When you use ND MAD, follow these guidelines:

- Do not configure ND MAD on VLAN-interface 1.
- Do not use the VLAN configured for ND MAD for any other purposes.
- If an intermediate device is used, you can use common data links as ND MAD links. If no intermediate device is used, set up dedicated ND MAD links between IRF member devices.
- If an intermediate device is used, make sure the following requirements are met:
 - Run the spanning tree feature between the IRF fabric and the intermediate device. Make sure there is only one ND MAD link in forwarding state. For more information about the spanning tree feature and its configuration, see [Layer 2—LAN Switching Configuration Guide](#).
 - Enable the IRF fabric to change its bridge MAC address as soon as the address owner leaves.
 - Create an ND MAD VLAN and assign the ports on the ND MAD links to the VLAN.
 - If the intermediate device is also an IRF fabric, assign the two IRF fabrics different domain IDs for correct split detection.

To configure ND MAD:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><code>system-view</code></td>
<td>N/A</td>
</tr>
<tr>
<td>2.</td>
<td><code>irf domain domain-id</code></td>
<td>The default IRF domain ID is 0.</td>
</tr>
<tr>
<td>3.</td>
<td><code>undo irf mac-address persistent</code></td>
<td>By default, the IRF bridge MAC address remains unchanged for 6 minutes after the address owner leaves.</td>
</tr>
<tr>
<td>4.</td>
<td><code>vlan vlan-id</code></td>
<td>By default, only VLAN 1 exists.</td>
</tr>
<tr>
<td>5.</td>
<td><code>quit</code></td>
<td>N/A</td>
</tr>
<tr>
<td>6.</td>
<td><code>interface interface-type interface-number</code></td>
<td>N/A</td>
</tr>
<tr>
<td>7.</td>
<td>Assign the port to the ND MAD VLAN.</td>
<td>The link type of ND MAD ports can be access, trunk, or hybrid. The default link type of a port is access.</td>
</tr>
</tbody>
</table>
 - Assign the port to the VLAN as an access port:
 | `port access vlan vlan-id` |
 - Assign the port to the VLAN as a trunk port:
 | `port trunk permit vlan vlan-id` |
 - Assign the port to the VLAN as a hybrid port:
<pre><code>| `port hybrid vlan vlan-id { tagged | untagged }` |
</code></pre>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>Return to system view.</td>
<td>quit</td>
</tr>
<tr>
<td>9.</td>
<td>Enter VLAN interface view.</td>
<td>interface vlan-interface vlan-interface-id</td>
</tr>
<tr>
<td>10.</td>
<td>Assign the interface an IP address.</td>
<td>ipv6 address { ipv6-address/prefix-length</td>
</tr>
<tr>
<td>11.</td>
<td>Enable ND MAD.</td>
<td>mad nd enable</td>
</tr>
</tbody>
</table>

Excluding a port or interface from the shutdown action upon detection of multi-active collision

By default, all ports and interfaces except the console port and IRF physical interfaces shut down automatically when the IRF fabric transits to the Recovery state.

You can exclude a network port or interface from the shutdown action for management or other special purposes. For example:
- Exclude a port from the shutdown action so you can Telnet to the port for managing the device.
- Exclude a VLAN interface and its Layer 2 ports from the shutdown action so you can log in through the VLAN interface.

Configuration restrictions and guidelines

When you configure this feature, follow these restrictions and guidelines:
- If the Layer 2 ports of a VLAN interface are distributed on multiple member devices, the exclusion operation might introduce IP collision risks. The VLAN interface might be up on both active and inactive IRF fabrics.
- Do not exclude the following ports and interfaces from the shutdown action:
 - Aggregate interfaces used for MAD and their member ports.
 - VLAN interfaces used for MAD and the Ethernet ports in the VLANs.
 - Management Ethernet ports used for MAD.

Configuration procedure

To configure a port or interface to not shut down when the IRF fabric transits to the Recovery state:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
<td>system-view</td>
</tr>
<tr>
<td>2.</td>
<td>Configure a network port or interface to not shut down when the IRF fabric transits to the Recovery state.</td>
<td>mad exclude interface interface-type interface-number</td>
</tr>
</tbody>
</table>

Recovering an IRF fabric

When the failed IRF link between two split IRF fabrics is recovered, all member devices in the inactive IRF fabric automatically join the active IRF fabric as subordinate members. The network ports and interfaces that have been shut down by MAD automatically restore their original physical state, as shown in Figure 12.
If the active IRF fabric fails before the IRF link is recovered (see Figure 13), use the `mad restore` command on the inactive IRF fabric to recover the inactive IRF fabric. This command also brings up all network ports and interfaces that were shut down by MAD. After you repair the IRF link, the two parts merge into a unified IRF fabric.

To manually recover an inactive IRF fabric:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enter system view.</td>
</tr>
<tr>
<td></td>
<td><code>system-view</code></td>
</tr>
<tr>
<td>2.</td>
<td>Recover the inactive IRF fabric.</td>
</tr>
<tr>
<td></td>
<td><code>mad restore</code></td>
</tr>
</tbody>
</table>

After the IRF fabric is recovered, all ports and interfaces that have been shut down by MAD come up automatically.
Removing an expansion interface card that has IRF physical interfaces

To remove an expansion interface card that provides IRF physical interfaces:
1. Perform one of the following tasks to eliminate temporary packet loss:
 - Remove cables from the IRF physical interfaces on the card.
 - Shut down the IRF physical interfaces on the card by using the `shutdown` command.
2. Remove the card.

Replacing an expansion interface card that has IRF physical interfaces

To replace the old card with a different model replacement card:
1. Shut down the IRF physical interfaces on the old card by using the `shutdown` command.
2. Remove the IRF port bindings that contain the physical interfaces.
3. Remove the old card, and then install the replacement card.
4. Verify that the replacement card has been correctly installed by using the `display device` command.
5. Reconfigure the IRF port bindings, as described in "Binding physical interfaces to IRF ports."
6. Activate the IRF port settings by using the `irf-port-configuration active` command.
 You may skip this step if the the IRF port is in UP state when you add bindings.

To replace the old card with the same model replacement card:
1. Shut down the IRF physical interfaces on the old card by using the `shutdown` command.
2. Remove the old card, and then install the replacement card.
3. Verify that the replacement card has been correctly installed by using the `display device` command.
4. Bring up the physical interfaces by using the `undo shutdown` command after the interface card completes startup.

Displaying and maintaining an IRF fabric

Execute `display` commands in any view.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about all IRF members.</td>
<td><code>display irf</code></td>
</tr>
<tr>
<td>Display the IRF fabric topology.</td>
<td><code>display irf topology</code></td>
</tr>
<tr>
<td>Display IRF link information.</td>
<td><code>display irf link</code></td>
</tr>
<tr>
<td>Display IRF configuration.</td>
<td><code>display irf configuration</code></td>
</tr>
<tr>
<td>Display the load sharing mode for IRF links.</td>
<td><code>display irf-port load-sharing mode [irf-port [member-id/irf-port-number]]</code></td>
</tr>
<tr>
<td>Display MAD configuration.</td>
<td><code>display mad [verbose]</code></td>
</tr>
</tbody>
</table>
Configuration examples

This section provides IRF configuration examples for IRF fabrics that use different MAD mechanisms.

LACP MAD-enabled IRF configuration example

Network requirements
As shown in Figure 14, set up a four-chassis IRF fabric at the access layer of the enterprise network. Configure LACP MAD on the multichassis aggregation to Device E, an HPE device that supports extended LACP.

Figure 14 Network diagram

Configuration procedure
1. **Configure Device A:**

 # Shut down the physical interfaces used for IRF links. In this example, the physical interfaces are shut down in batch. For more information, see Layer 2—LAN Switching Configuration Guide.

   ```
   <Sysname> system-view
   [Sysname] interface range fortygige 1/0/1 to fortygige 1/0/4
   [Sysname-if-range] shutdown
   [Sysname-if-range] quit
   # Bind FortyGigE 1/0/1 and FortyGigE 1/0/2 to IRF-port 1/1.
   [Sysname] irf-port 1/1
   [Sysname-irf-port1/1] port group interface fortygige 1/0/1
   ```
1. Configure Device A:

 # Bind FortyGigE 1/0/3 and FortyGigE 1/0/4 to IRF-port 1/2.
 [Sysname] irf-port 1/2
 [Sysname-irf-port1/2] port group interface fortygige 1/0/3
 [Sysname-irf-port1/2] port group interface fortygige 1/0/4
 [Sysname-irf-port1/2] quit

 # Bring up the physical interfaces and save the configuration.
 [Sysname] interface range fortygige 1/0/1 to fortygige 1/0/4
 [Sysname-if-range] undo shutdown
 [Sysname-if-range] quit
 [Sysname] save

 # Activate the IRF port configuration.
 [Sysname] irf-port-configuration active

2. Configure Device B:

 # Change the member ID of Device B to 2 and reboot the device to validate the change.
 <Sysname> system-view
 [Sysname] irf member 1 renumber 2
 Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
 [Sysname] quit
 <Sysname> reboot

 # Connect Device B to Device A as shown in Figure 14, and log in to Device B. (Details not shown.)

 # Shut down the physical interfaces for IRF links.
 <Sysname> system-view
 [Sysname] interface range fortygige 2/0/1 to fortygige 2/0/4
 [Sysname-if-range] shutdown
 [Sysname-if-range] quit

 # Bind FortyGigE 2/0/1 and FortyGigE 2/0/2 to IRF-port 2/1.
 [Sysname] irf-port 2/1
 [Sysname-irf-port2/1] port group interface fortygige 2/0/1
 [Sysname-irf-port2/1] port group interface fortygige 2/0/2
 [Sysname-irf-port2/1] quit

 # Bind FortyGigE 2/0/3 and FortyGigE 2/0/4 to IRF-port 2/2.
 [Sysname] irf-port 2/2
 [Sysname-irf-port2/2] port group interface fortygige 2/0/3
 [Sysname-irf-port2/2] port group interface fortygige 2/0/4
 [Sysname-irf-port2/2] quit

 # Bring up the physical interfaces and save the configuration.
 [Sysname] interface range fortygige 2/0/1 to fortygige 2/0/4
 [Sysname-if-range] undo shutdown
 [Sysname-if-range] quit
 [Sysname] save

 # Activate the IRF port configuration.
 [Sysname] irf-port-configuration active

The two devices perform master election, and the one that has lost the election reboots to form an IRF fabric with the master.
3. **Configure Device C:**

 # Change the member ID of Device C to 3 and reboot the device to validate the change.

   ```
<device> system-view
[device] irf member 1 renumber 3
Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
[device] quit
<device> reboot
   
   # Connect Device C to Device A as shown in Figure 14, and log in to Device C. (Details not shown.)
   
   # Shut down the physical interfaces for IRF links.

   ```
<device> system-view
[device] interface range fortygige 3/0/1 to fortygige 3/0/4
[device-if-range] shutdown
[device-if-range] quit

Bind FortyGigE 3/0/1 and FortyGigE 3/0/2 to IRF-port 3/1.

```
[device] irf-port 3/1
[device-if-port3/1] port group interface fortygige 3/0/1
[device-if-port3/1] port group interface fortygige 3/0/2
[device-if-port3/1] quit

# Bind FortyGigE 3/0/3 and FortyGigE 3/0/4 to IRF-port 3/2.

```
[device] irf-port 3/2
[device-if-port3/2] port group interface fortygige 3/0/3
[device-if-port3/2] port group interface fortygige 3/0/4
[device-if-port3/2] quit

Bring up the physical interfaces and save the configuration.

```
[device] interface range fortygige 3/0/1 to fortygige 3/0/4
[device-if-range] undo shutdown
[device-if-range] quit
[device] save

# Activate the IRF port configuration.

```
[device] irf-port-configuration active

Device C reboots to join the IRF fabric.

4. **Configure Device D:**

 # Change the member ID of Device D to 4 and reboot the device to validate the change.

   ```
<device> system-view
[device] irf member 1 renumber 4
Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
[device] quit
<device> reboot

# Connect Device D to Device B and Device C as shown in Figure 14, and log in to Device D. (Details not shown.)

# Shut down the physical interfaces.

```
<device> system-view
[device] interface range fortygige 4/0/1 to fortygige 4/0/4
[device-if-range] shutdown
[device-if-range] quit

Bind FortyGigE 4/0/1 and FortyGigE 4/0/2 to IRF-port 4/1.
5. Configure LACP MAD on the IRF fabric:
 # Set the domain ID of the IRF fabric to 1.
 <Sysname> system-view
 [Sysname] irf domain 1
 # Create a dynamic aggregate interface and enable LACP MAD.
 [Sysname] interface bridge-aggregation 2
 [Sysname-Bridge-Aggregation2] link-aggregation mode dynamic
 [Sysname-Bridge-Aggregation2] mad enable
 You need to assign a domain ID (range: 0-4294967295)
 [Current domain is: 1]:
 The assigned domain ID is: 1
 Info: MAD LACP only enable on dynamic aggregation interface.
 [Sysname-Bridge-Aggregation2] quit
 # Assign FortyGigE 1/0/5, FortyGigE 2/0/5, FortyGigE 3/0/5, and FortyGigE 4/0/5 to the aggregate interface.
 [Sysname] interface range fortygige 1/0/5 fortygige 2/0/5 fortygige 3/0/5 fortygige 4/0/5
 [Sysname-if-range] port link-aggregation group 2
 [Sysname-if-range] quit

6. Configure Device E as the intermediate device:

 CAUTION:
 If the intermediate device is also an IRF fabric, assign the two IRF fabrics different domain IDs for correct split detection. False detection causes IRF split.

 # Create a dynamic aggregate interface.
 <Sysname> system-view
 [Sysname] interface bridge-aggregation 2
 [Sysname-Bridge-Aggregation2] link-aggregation mode dynamic
 [Sysname-Bridge-Aggregation2] quit
BFD MAD-enabled IRF configuration example

Network requirements

As shown in Figure 15, set up a four-chassis IRF fabric at the distribution layer of the enterprise network.

- Configure BFD MAD on the IRF fabric and set up BFD MAD links between each member device and the intermediate device.
- Disable the spanning tree feature on the ports used for BFD MAD, because the two features conflict with each other.

Figure 15 Network diagram

<table>
<thead>
<tr>
<th>Device A</th>
<th>Device B</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGE1/0/1</td>
<td>FGE2/0/2</td>
</tr>
<tr>
<td>FGE1/0/2</td>
<td>FGE2/0/4</td>
</tr>
<tr>
<td>(IRF-port 1/1)</td>
<td>(IRF-port 1/2)</td>
</tr>
<tr>
<td>FGE3/0/3</td>
<td>FGE4/0/3</td>
</tr>
<tr>
<td>FGE3/0/4</td>
<td>FGE4/0/4</td>
</tr>
<tr>
<td>(IRF-port 3/1)</td>
<td>(IRF-port 3/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device C</th>
<th>Device D</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGE3/0/1</td>
<td>FGE4/0/1</td>
</tr>
<tr>
<td>FGE3/0/2</td>
<td>FGE4/0/2</td>
</tr>
<tr>
<td>(IRF-port 3/1)</td>
<td>(IRF-port 3/2)</td>
</tr>
<tr>
<td>FGE1/0/5</td>
<td>FGE3/0/5</td>
</tr>
<tr>
<td>FGE2/0/5</td>
<td>FGE4/0/5</td>
</tr>
</tbody>
</table>

1. Configure Device A:
 - # Shut down the physical interfaces used for IRF links.
     ```plaintext
     <Sysname> system-view
     [Sysname] interface range fortygige 1/0/1 to fortygige 1/0/4
     [Sysname-if-range] shutdown
     [Sysname-if-range] quit
     ```
Bind FortyGigE 1/0/1 and FortyGigE 1/0/2 to IRF-port 1/1.
[Sysname] irf-port 1/1
[Sysname-irf-port1/1] port group interface fortygige 1/0/1
[Sysname-irf-port1/1] port group interface fortygige 1/0/2
[Sysname-irf-port1/1] quit

Bind FortyGigE 1/0/3 and FortyGigE 1/0/4 to IRF-port 1/2.
[Sysname] irf-port 1/2
[Sysname-irf-port1/2] port group interface fortygige 1/0/3
[Sysname-irf-port1/2] port group interface fortygige 1/0/4
[Sysname-irf-port1/2] quit

Bring up the physical interfaces and save the configuration.
[Sysname] interface range fortygige 1/0/1 to fortygige 1/0/4
[Sysname-if-range] undo shutdown
[Sysname-if-range] quit
[Sysname] save

Activate the IRF port configuration.
[Sysname] irf-port-configuration active

2. Configure Device B:

Change the member ID of Device B to 2 and reboot the device to validate the change.
<Sysname> system-view
[Sysname] irf member 1 renumber 2
Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
[Sysname] quit
<Sysname> reboot

Connect Device B to Device A as shown in Figure 15, and log in to Device B. (Details not shown.)

Shut down the physical interfaces used for IRF links.
<Sysname> system-view
[Sysname] interface range fortygige 2/0/1 to fortygige 2/0/4
[Sysname-if-range] shutdown
[Sysname-if-range] quit

Bind FortyGigE 2/0/1 and FortyGigE 2/0/2 to IRF-port 2/1.
[Sysname] irf-port 2/1
[Sysname-irf-port2/1] port group interface fortygige 2/0/1
[Sysname-irf-port2/1] port group interface fortygige 2/0/2
[Sysname-irf-port2/1] quit

Bind FortyGigE 2/0/3 and FortyGigE 2/0/4 to IRF-port 2/2.
[Sysname] irf-port 2/2
[Sysname-irf-port2/2] port group interface fortygige 2/0/3
[Sysname-irf-port2/2] port group interface fortygige 2/0/4
[Sysname-irf-port2/2] quit

Bring up the physical interfaces and save the configuration.
[Sysname] interface range fortygige 2/0/1 to fortygige 2/0/4
[Sysname-if-range] undo shutdown
[Sysname-if-range] quit
[Sysname] save

Activate the IRF port configuration.
The two devices perform master election, and the one that has lost the election reboots to form an IRF fabric with the master.

3. **Configure Device C:**

 # Change the member ID of Device C to 3 and reboot the device to validate the change.

   ```
   <Sysname> system-view
   [Sysname] irf member 1 renumber 3
   Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
   [Sysname] quit
   <Sysname> reboot
   ```

 # Connect Device C to Device A as shown in Figure 15, and log in to Device C. (Details not shown.)

 # Shut down the physical interfaces used for IRF links.

   ```
   <Sysname> system-view
   [Sysname] interface range fortygige 3/0/1 to fortygige 3/0/4
   [Sysname-if-range] shutdown
   [Sysname-if-range] quit
   ```

 # Bind FortyGigE 3/0/1 and FortyGigE 3/0/2 to IRF-port 3/1.

   ```
   [Sysname] irf-port 3/1
   [Sysname-irf-port3/1] port group interface fortygige 3/0/1
   [Sysname-irf-port3/1] port group interface fortygige 3/0/2
   [Sysname-irf-port3/1] quit
   ```

 # Bind FortyGigE 3/0/3 and FortyGigE 3/0/4 to IRF-port 3/2.

   ```
   [Sysname] irf-port 3/2
   [Sysname-irf-port3/2] port group interface fortygige 3/0/3
   [Sysname-irf-port3/2] port group interface fortygige 3/0/4
   [Sysname-irf-port3/2] quit
   ```

 # Bring up the physical interfaces and save the configuration.

   ```
   [Sysname] interface range fortygige 3/0/1 to fortygige 3/0/4
   [Sysname-if-range] undo shutdown
   [Sysname-if-range] quit
   [Sysname] save
   ```

 # Activate the IRF port configuration.

   ```
   [Sysname] irf-port-configuration active
   ```

 Device C reboots to join the IRF fabric.

4. **Configure Device D:**

 # Change the member ID of Device D to 4 and reboot the device to validate the change.

   ```
   <Sysname> system-view
   [Sysname] irf member 1 renumber 4
   Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
   [Sysname] quit
   <Sysname> reboot
   ```

 # Connect Device D to Device B and Device C as shown in Figure 15, and log in to Device D. (Details not shown.)

 # Shut down the physical interfaces used for IRF links.

   ```
   <Sysname> system-view
   [Sysname] interface range fortygige 4/0/1 to fortygige 4/0/4
   ```
Bind FortyGigE 4/0/1 and FortyGigE 4/0/2 to IRF-port 4/1.

[Sysname] irf-port 4/1
[Sysname-irf-port4/1] port group interface fortygige 4/0/1
[Sysname-irf-port4/1] port group interface fortygige 4/0/2
[Sysname-irf-port4/1] quit

Bind FortyGigE 4/0/3 and FortyGigE 4/0/4 to IRF-port 4/2.

[Sysname] irf-port 4/2
[Sysname-irf-port4/2] port group interface fortygige 4/0/3
[Sysname-irf-port4/2] port group interface fortygige 4/0/4
[Sysname-irf-port4/2] quit

Bring up the physical interfaces and save the configuration.

[Sysname] interface range fortygige 4/0/1 to fortygige 4/0/4
[Sysname-if-range] undo shutdown
[Sysname-if-range] quit
[Sysname] save

Activate the IRF port configuration.

[Sysname] irf-port-configuration active

Device D reboots to join the IRF fabric. A four-chassis IRF fabric is formed.

5. Configure BFD MAD on the IRF fabric:

Create VLAN 3, and add FortyGigE 1/0/5, FortyGigE 2/0/5, FortyGigE 3/0/5, and FortyGigE 4/0/5 to VLAN 3.

[Sysname] vlan 3
[Sysname-vlan3] port fortygige 1/0/5 fortygige 2/0/5 fortygige 3/0/5 fortygige 4/0/5
[Sysname-vlan3] quit

Create VLAN-interface 3, and configure a MAD IP address for each member device on the VLAN interface.

[Sysname] interface vlan-interface 3
[Sysname-Vlan-interface3] mad bfd enable
[Sysname-Vlan-interface3] mad ip address 192.168.2.1 24 member 1
[Sysname-Vlan-interface3] mad ip address 192.168.2.2 24 member 2
[Sysname-Vlan-interface3] mad ip address 192.168.2.3 24 member 3
[Sysname-Vlan-interface3] mad ip address 192.168.2.4 24 member 4
[Sysname-Vlan-interface3] quit

Disable the spanning tree feature on FortyGigE 1/0/5, FortyGigE 2/0/5, FortyGigE 3/0/5, and FortyGigE 4/0/5.

[Sysname] interface range fortygige 1/0/5 fortygige 2/0/5 fortygige 3/0/5 fortygige 4/0/5
[Sysname-if-range] undo stp enable
[Sysname-if-range] quit

6. Configure Device E as the intermediate device:

⚠️ **CAUTION:**

If the intermediate device is also an IRF fabric, assign the two IRF fabrics different domain IDs for correct split detection. False detection causes IRF split.

Create VLAN 3, and assign FortyGigE 1/0/1, FortyGigE 1/0/2, FortyGigE 1/0/3, and FortyGigE 1/0/4 to VLAN 3 for forwarding BFD MAD packets.
ARP MAD-enabled IRF configuration example

Network requirements

As shown in Figure 16, set up a four-chassis IRF fabric in the enterprise network.

- Configure ARP MAD on the IRF fabric and use the links connected to Device E for transmitting ARP MAD packets.
- To prevent loops, run the spanning tree feature between Device E and the IRF fabric.

Figure 16 Network diagram

Configuration procedure

1. Configure Device A:

 # Shut down the physical interfaces used for IRF links.

 `<Sysname> system-view
 [Sysname] interface range fortygige 1/0/1 to fortygige 1/0/4
 [Sysname-if-range] shutdown
 [Sysname-if-range] quit

 # Bind FortyGigE 1/0/1 and FortyGigE 1/0/2 to IRF-port 1/1.

 [Sysname] irf-port 1/1
 [Sysname-if-irf-port1/1] port group interface fortygige 1/0/1
 [Sysname-if-irf-port1/1] port group interface fortygige 1/0/2
Bind FortyGigE 1/0/3 and FortyGigE 1/0/4 to IRF-port 1/2.
[Sysname] irf-port 1/2
[Sysname-irf-port1/2] port group interface fortygige 1/0/3
[Sysname-irf-port1/2] port group interface fortygige 1/0/4
[Sysname-irf-port1/2] quit

Bring up the physical interfaces and save the configuration.
[Sysname] interface range fortygige 1/0/1 to fortygige 1/0/4
[Sysname-if-range] undo shutdown
[Sysname-if-range] quit
[Sysname] save

Activate the IRF port configuration.
[Sysname] irf-port-configuration active

2. Configure Device B:
Change the member ID of Device B to 2 and reboot the device to validate the change.
<Sysname> system-view
[Sysname] irf member 1 renumber 2
Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
[Sysname] quit
<Sysname> reboot

Connect Device B to Device A as shown in Figure 16, and log in to Device B. (Details not shown.)
Shut down the physical interfaces used for IRF links.
<Sysname> system-view
[Sysname] interface range fortygige 2/0/1 to fortygige 2/0/4
[Sysname-if-range] shutdown
[Sysname-if-range] quit

Bind FortyGigE 2/0/1 and FortyGigE 2/0/2 to IRF-port 2/1.
[Sysname] irf-port 2/1
[Sysname-irf-port2/1] port group interface fortygige 2/0/1
[Sysname-irf-port2/1] port group interface fortygige 2/0/2
[Sysname-irf-port2/1] quit

Bind FortyGigE 2/0/3 and FortyGigE 2/0/4 to IRF-port 2/2.
[Sysname] irf-port 2/2
[Sysname-irf-port2/2] port group interface fortygige 2/0/3
[Sysname-irf-port2/2] port group interface fortygige 2/0/4
[Sysname-irf-port2/2] quit

Bring up the physical interfaces and save the configuration.
[Sysname] interface range fortygige 2/0/1 to fortygige 2/0/4
[Sysname-if-range] undo shutdown
[Sysname-if-range] quit
[Sysname] save

Activate the IRF port configuration.
[Sysname] irf-port-configuration active

The two devices perform master election, and the one that has lost the election reboots to form an IRF fabric with the master.

3. Configure Device C:
Change the member ID of Device C to 3 and reboot the device to validate the change.
<Sysname> system-view
[Sysname] irf member 1 renumber 3
Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]: y
[Sysname] quit
<Sysname> reboot

Connect Device C to Device A as shown in Figure 16, and log in to Device C. (Details not shown.)

Shut down the physical interfaces used for IRF links.
<Sysname> system-view
[Sysname] interface range fortygige 3/0/1 to fortygige 3/0/4
[Sysname-if-range] shutdown
[Sysname-if-range] quit

Bind FortyGigE 3/0/1 and FortyGigE 3/0/2 to IRF-port 3/1.
[Sysname] irf-port 3/1
[Sysname-irf-port3/1] port group interface fortygige 3/0/1
[Sysname-irf-port3/1] port group interface fortygige 3/0/2
[Sysname-irf-port3/1] quit

Bind FortyGigE 3/0/3 and FortyGigE 3/0/4 to IRF-port 3/2.
[Sysname] irf-port 3/2
[Sysname-irf-port3/2] port group interface fortygige 3/0/3
[Sysname-irf-port3/2] port group interface fortygige 3/0/4
[Sysname-irf-port3/2] quit

Bring up the physical interfaces and save the configuration.
[Sysname] interface range fortygige 3/0/1 to fortygige 3/0/4
[Sysname-if-range] undo shutdown
[Sysname-if-range] quit
[Sysname] save

Activate the IRF port configuration.
[Sysname] irf-port-configuration active
Device C reboots to join the IRF fabric.

4. Configure Device D:

Change the member ID of Device D to 4 and reboot the device to validate the change.
<Sysname> system-view
[Sysname] irf member 1 renumber 4
Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]: y
[Sysname] quit
<Sysname> reboot

Connect Device D to Device B and Device C as shown in Figure 16, and log in to Device D. (Details not shown.)

Shut down the physical interfaces used for IRF links.
<Sysname> system-view
[Sysname] interface range fortygige 4/0/1 to fortygige 4/0/4
[Sysname-if-range] shutdown
[Sysname-if-range] quit

Bind FortyGigE 4/0/1 and FortyGigE 4/0/2 to IRF-port 4/1.
[Sysname] irf-port 4/1
[Sysname-irf-port4/1] port group interface fortygige 4/0/1
5. Configure ARP MAD on the IRF fabric:
 # Enable the spanning tree feature globally. Map the ARP MAD VLAN to MSTI 1 in the MST region.
 <Sysname> system-view
 [Sysname] stp global enable
 [Sysname] stp region-configuration
 [Sysname-mst-region] region-name arpmad
 [Sysname-mst-region] instance 1 vlan 3
 [Sysname-mst-region] active region-configuration
 [Sysname-mst-region] quit
 # Configure the IRF fabric to change its bridge MAC address as soon as the address owner leaves.
 [Sysname] undo irf mac-address persistent
 # Set the domain ID of the IRF fabric to 1.
 [Sysname] irf domain 1
 # Create VLAN 3, and assign FortyGigE 1/0/5, FortyGigE 2/0/5, FortyGigE 3/0/5, and FortyGigE 4/0/5 to VLAN 3.
 [Sysname] vlan 3
 [Sysname-vlan3] port fortygige 1/0/5 fortygige 2/0/5 fortygige 3/0/5 fortygige 4/0/5
 [Sysname-vlan3] quit
 # Create VLAN-interface 3, assign it an IP address, and enable ARP MAD on the interface.
 [Sysname] interface vlan-interface 3
 [Sysname-Vlan-interface3] ip address 192.168.2.1 24
 [Sysname-Vlan-interface3] mad arp enable
 You need to assign a domain ID (range: 0-4294967295)
 [Current domain is: 1]:
 The assigned domain ID is: 1

6. Configure Device E as the intermediate device:

⚠️ CAUTION:
If the intermediate device is also in an IRF fabric, assign the two IRF fabrics different domain IDs for correct split detection. False detection causes IRF split.
Enable the spanning tree feature globally. Map the ARP MAD VLAN to MSTI 1 in the MST region.
<DeviceE> system-view
[DeviceE] stp global enable
[DeviceE] stp region-configuration
[DeviceE-mst-region] region-name arpmad
[DeviceE-mst-region] instance 1 vlan 3
[DeviceE-mst-region] active region-configuration
[DeviceE-mst-region] quit

Create VLAN 3, and assign FortyGigE 1/0/1, FortyGigE 1/0/2, FortyGigE 1/0/3, and FortyGigE 1/0/4 to VLAN 3 for forwarding ARP MAD packets.
[DeviceE] vlan 3
[DeviceE-vlan3] port fortygige 1/0/1 to fortygige 1/0/4
[DeviceE-vlan3] quit

ND MAD-enabled IRF configuration example

Network requirements
As shown in Figure 17, set up a four-chassis IRF fabric in the IPv6 enterprise network.
- Configure ND MAD on the IRF fabric and use the links connected to Device E for transmitting ND MAD packets.
- To prevent loops, run the spanning tree feature between Device E and the IRF fabric.

Figure 17 Network diagram

Configuration procedure
1. Configure Device A:
Shut down the physical interfaces used for IRF links.
<Sysname> system-view
[Sysname] interface range fortygige 1/0/1 to fortygige 1/0/4
[Sysname-if-range] shutdown
[Sysname-if-range] quit

Bind FortyGigE 1/0/1 and FortyGigE 1/0/2 to IRF-port 1/1.
[Sysname] irf-port 1/1
[Sysname-irf-port1/1] port group interface fortygige 1/0/1
[Sysname-irf-port1/1] port group interface fortygige 1/0/2
[Sysname-irf-port1/1] quit

Bind FortyGigE 1/0/3 and FortyGigE 1/0/4 to IRF-port 1/2.
[Sysname] irf-port 1/2
[Sysname-irf-port1/2] port group interface fortygige 1/0/3
[Sysname-irf-port1/2] port group interface fortygige 1/0/4
[Sysname-irf-port1/2] quit

Bring up the physical interfaces and save the configuration.
[Sysname] interface range fortygige 1/0/1 to fortygige 1/0/4
[Sysname-if-range] undo shutdown
[Sysname-if-range] quit
[Sysname] save

Activate the IRF port configuration.
[Sysname] irf-port-configuration active

2. Configure Device B:

Change the member ID of Device B to 2 and reboot the device to validate the change.
<Sysname> system-view
[Sysname] irf member 1 renumber 2
Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]:y
[Sysname] quit
<Sysname> reboot

Connect Device B to Device A as shown in Figure 17, and log in to Device B. (Details not shown.)

Shut down the physical interfaces used for IRF links.
<Sysname> system-view
[Sysname] interface range fortygige 2/0/1 to fortygige 2/0/4
[Sysname-if-range] shutdown
[Sysname-if-range] quit

Bind FortyGigE 2/0/1 and FortyGigE 2/0/2 to IRF-port 2/1.
[Sysname] irf-port 2/1
[Sysname-irf-port2/1] port group interface fortygige 2/0/1
[Sysname-irf-port2/1] port group interface fortygige 2/0/2
[Sysname-irf-port2/1] quit

Bind FortyGigE 2/0/3 and FortyGigE 2/0/4 to IRF-port 2/2.
[Sysname] irf-port 2/2
[Sysname-irf-port2/2] port group interface fortygige 2/0/3
[Sysname-irf-port2/2] port group interface fortygige 2/0/4
[Sysname-irf-port2/2] quit

Bring up the physical interfaces and save the configuration.
Activate the IRF port configuration.
[Sysname] irf-port-configuration active

The two devices perform master election, and the one that has lost the election reboots to form an IRF fabric with the master.

3. Configure Device C:

Change the member ID of Device C to 3 and reboot the device to validate the change.
<Sysname> system-view
[Sysname] irf member 1 renumber 3
Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]: y
[Sysname] quit
<Sysname> reboot

Connect Device C to Device A as shown in Figure 17, and log in to Device C. (Details not shown.)

Shut down the physical interfaces used for IRF links.
<Sysname> system-view
[Sysname] interface range fortygige 3/0/1 to fortygige 3/0/4
[Sysname-if-range] shutdown
[Sysname-if-range] quit

Bind FortyGigE 3/0/1 and FortyGigE 3/0/2 to IRF-port 3/1.
[Sysname] irf-port 3/1
[Sysname-irf-port3/1] port group interface fortygige 3/0/1
[Sysname-irf-port3/1] port group interface fortygige 3/0/2
[Sysname-irf-port3/1] quit

Bind FortyGigE 3/0/3 and FortyGigE 3/0/4 to IRF-port 3/2.
[Sysname] irf-port 3/2
[Sysname-irf-port3/2] port group interface fortygige 3/0/3
[Sysname-irf-port3/2] port group interface fortygige 3/0/4
[Sysname-irf-port3/2] quit

Bring up the physical interfaces and save the configuration.
[Sysname] interface range fortygige 3/0/1 to fortygige 3/0/4
[Sysname-if-range] undo shutdown
[Sysname-if-range] quit
[Sysname] save

Activate the IRF port configuration.
[Sysname] irf-port-configuration active

Device C reboots to join the IRF fabric.

4. Configure Device D:

Change the member ID of Device D to 4 and reboot the device to validate the change.
<Sysname> system-view
[Sysname] irf member 1 renumber 4
Renumbering the member ID may result in configuration change or loss. Continue? [Y/N]: y
[Sysname] quit
<Sysname> reboot
Connect Device D to Device B and Device C as shown in Figure 17, and log in to Device D. (Details not shown.)

Shut down the physical interfaces used for IRF links.

```plaintext
<Sysname> system-view
[Sysname] interface range fortygige 4/0/1 to fortygige 4/0/4
[Sysname-if-range] shutdown
[Sysname-if-range] quit
```

Bind FortyGigE 4/0/1 and FortyGigE 4/0/2 to IRF-port 4/1.

```plaintext
[Sysname] irf-port 4/1
[Sysname-irf-port4/1] port group interface fortygige 4/0/1
[Sysname-irf-port4/1] port group interface fortygige 4/0/2
[Sysname-irf-port4/1] quit
```

Bind FortyGigE 4/0/3 and FortyGigE 4/0/4 to IRF-port 4/2.

```plaintext
[Sysname] irf-port 4/2
[Sysname-irf-port4/2] port group interface fortygige 4/0/3
[Sysname-irf-port4/2] port group interface fortygige 4/0/4
[Sysname-irf-port4/2] quit
```

Bring up the physical interfaces and save the configuration.

```plaintext
[Sysname] interface range fortygige 4/0/1 to fortygige 4/0/4
[Sysname-if-range] undo shutdown
[Sysname-if-range] quit

[Sysname] save
```

Activate the IRF port configuration.

```plaintext
[Sysname] irf-port-configuration active
```

Device D reboots to join the IRF fabric. A four-chassis IRF fabric is formed.

5. Configure ND MAD on the IRF fabric:

Enable the spanning tree feature globally. Map the ND MAD VLAN to MSTI 1 in the MST region.

```plaintext
<Sysname> system-view
[Sysname] stp global enable
[Sysname] stp region-configuration
[Sysname-mst-region] region-name ndmad
[Sysname-mst-region] instance 1 vlan 3
[Sysname-mst-region] active region-configuration
[Sysname-mst-region] quit
```

Configure the IRF fabric to change its bridge MAC address as soon as the address owner leaves.

```plaintext
[Sysname] undo irf mac-address persistent
```

Set the domain ID of the IRF fabric to 1.

```plaintext
[Sysname] irf domain 1
```

Create VLAN 3, and add FortyGigE 1/0/5, FortyGigE 2/0/5, FortyGigE 3/0/5, and FortyGigE 4/0/5 to VLAN 3.

```plaintext
[Sysname] vlan 3
[Sysname-vlan3] port fortygige 1/0/5 fortygige 2/0/5 fortygige 3/0/5 fortygige 4/0/5
[Sysname-vlan3] quit
```

Create VLAN-interface 3, assign it an IPv6 address, and enable ND MAD on the interface.

```plaintext
[Sysname] interface vlan-interface 3
[Sysname-Vlan-interface3] ipv6 address 2001::1 64
```
[Sysname-Vlan-interface3] mad nd enable
You need to assign a domain ID (range: 0-4294967295)

[Current domain is: 1]:
The assigned domain ID is: 1

6. Configure Device E as the intermediate device:

⚠️ CAUTION:
If the intermediate device is also in an IRF fabric, assign the two IRF fabrics different domain IDs for correct split detection. False detection causes IRF split.

Enable the spanning tree feature globally. Map the ND MAD VLAN to MSTI 1 in the MST region.
<DeviceE> system-view
[DeviceE] stp global enable
[DeviceC] stp region-configuration
[DeviceC-mst-region] region-name ndmad
[DeviceC-mst-region] instance 1 vlan 3
[DeviceC-mst-region] active region-configuration
[DeviceC-mst-region] quit

Create VLAN 3, and add FortyGigE 1/0/1, FortyGigE 1/0/2, FortyGigE 1/0/3, and FortyGigE 1/0/4 to VLAN 3 for forwarding ND MAD packets.
[DeviceE] vlan 3
[DeviceE-vlan3] port fortygige 1/0/1 to fortygige 1/0/4
[DeviceE-vlan3] quit
Document conventions and icons

Conventions

This section describes the conventions used in the documentation.

Port numbering in examples

The port numbers in this document are for illustration only and might be unavailable on your device.

Command conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boldface</td>
<td>Bold text represents commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td>Italic</td>
<td>Italic text represents arguments that you replace with actual values.</td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets enclose syntax choices (keywords or arguments) that are optional.</td>
</tr>
<tr>
<td>{ x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>{ x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>&<1-n></td>
<td>The argument or keyword and argument combination before the ampersand (&) sign can be entered 1 to n times.</td>
</tr>
<tr>
<td>#</td>
<td>A line that starts with a pound (#) sign is comments.</td>
</tr>
</tbody>
</table>

GUI conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boldface</td>
<td>Window names, button names, field names, and menu items are in Boldface. For example, the New User window appears; click OK.</td>
</tr>
<tr>
<td>></td>
<td>Multi-level menus are separated by angle brackets. For example, File > Create > Folder.</td>
</tr>
</tbody>
</table>

Symbols

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ WARNING!</td>
<td>An alert that calls attention to important information that if not understood or followed can result in personal injury.</td>
</tr>
<tr>
<td>▼ CAUTION:</td>
<td>An alert that calls attention to important information that if not understood or followed can result in data loss, data corruption, or damage to hardware or software.</td>
</tr>
<tr>
<td>▲ IMPORTANT:</td>
<td>An alert that calls attention to essential information.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>An alert that contains additional or supplementary information.</td>
</tr>
<tr>
<td>• TIP:</td>
<td>An alert that provides helpful information.</td>
</tr>
</tbody>
</table>
Network topology icons

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Represents a generic network device, such as a router, switch, or firewall.</td>
</tr>
<tr>
<td></td>
<td>Represents a routing-capable device, such as a router or Layer 3 switch.</td>
</tr>
<tr>
<td></td>
<td>Represents a generic switch, such as a Layer 2 or Layer 3 switch, or a router that supports Layer 2 forwarding and other Layer 2 features.</td>
</tr>
<tr>
<td></td>
<td>Represents an access controller, a unified wired-WLAN module, or the access controller engine on a unified wired-WLAN switch.</td>
</tr>
<tr>
<td></td>
<td>Represents an access point.</td>
</tr>
<tr>
<td></td>
<td>Represents a wireless terminator unit.</td>
</tr>
<tr>
<td></td>
<td>Represents a wireless terminator.</td>
</tr>
<tr>
<td></td>
<td>Represents a mesh access point.</td>
</tr>
<tr>
<td></td>
<td>Represents omnidirectional signals.</td>
</tr>
<tr>
<td></td>
<td>Represents directional signals.</td>
</tr>
<tr>
<td></td>
<td>Represents a security product, such as a firewall, UTM, multiservice security gateway, or load balancing device.</td>
</tr>
<tr>
<td></td>
<td>Represents a security card, such as a firewall, load balancing, NetStream, SSL VPN, IPS, or ACG card.</td>
</tr>
</tbody>
</table>
Support and other resources

Accessing Hewlett Packard Enterprise Support

- For live assistance, go to the Contact Hewlett Packard Enterprise Worldwide website: www.hpe.com/assistance
- To access documentation and support services, go to the Hewlett Packard Enterprise Support Center website: www.hpe.com/support/hpesc

Information to collect
- Technical support registration number (if applicable)
- Product name, model or version, and serial number
- Operating system name and version
- Firmware version
- Error messages
- Product-specific reports and logs
- Add-on products or components
- Third-party products or components

Accessing updates

- Some software products provide a mechanism for accessing software updates through the product interface. Review your product documentation to identify the recommended software update method.
- To download product updates, go to either of the following:
 o Hewlett Packard Enterprise Support Center Get connected with updates page: www.hpe.com/support/e-updates
 o Software Depot website: www.hpe.com/support/softwaredepot

- To view and update your entitlements, and to link your contracts, Care Packs, and warranties with your profile, go to the Hewlett Packard Enterprise Support Center More Information on Access to Support Materials page: www.hpe.com/support/AccessToSupportMaterials

IMPORTANT:
Access to some updates might require product entitlement when accessed through the Hewlett Packard Enterprise Support Center. You must have an HP Passport set up with relevant entitlements.

Websites

<table>
<thead>
<tr>
<th>Website</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networking websites</td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>Link</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Hewlett Packard Enterprise Information Library for Networking</td>
<td>www.hpe.com/networking/resourcefinder</td>
</tr>
<tr>
<td>Hewlett Packard Enterprise Networking website</td>
<td>www.hpe.com/info/networking</td>
</tr>
<tr>
<td>Hewlett Packard Enterprise My Networking website</td>
<td>www.hpe.com/networking/support</td>
</tr>
<tr>
<td>Hewlett Packard Enterprise Networking Warranty</td>
<td>www.hpe.com/networking/warranty</td>
</tr>
<tr>
<td>General websites</td>
<td></td>
</tr>
<tr>
<td>Hewlett Packard Enterprise Information Library</td>
<td>www.hpe.com/info/enterprise/docs</td>
</tr>
<tr>
<td>Hewlett Packard Enterprise Support Center</td>
<td>www.hpe.com/support/hpesc</td>
</tr>
<tr>
<td>Hewlett Packard Enterprise Support Services Central</td>
<td>ssc.hpe.com/portal/site/ssc/</td>
</tr>
<tr>
<td>Contact Hewlett Packard Enterprise Worldwide</td>
<td>www.hpe.com/assistance</td>
</tr>
<tr>
<td>Subscription Service/Support Alerts</td>
<td>www.hpe.com/support/e-updates</td>
</tr>
<tr>
<td>Software Depot</td>
<td>www.hpe.com/support/softwaredepot</td>
</tr>
<tr>
<td>Customer Self Repair (not applicable to all devices)</td>
<td>www.hpe.com/support/selfrepair</td>
</tr>
<tr>
<td>Insight Remote Support (not applicable to all devices)</td>
<td>www.hpe.com/info/insightremotesupport/docs</td>
</tr>
</tbody>
</table>

Customer self repair

Hewlett Packard Enterprise customer self repair (CSR) programs allow you to repair your product. If a CSR part needs to be replaced, it will be shipped directly to you so that you can install it at your convenience. Some parts do not qualify for CSR. Your Hewlett Packard Enterprise authorized service provider will determine whether a repair can be accomplished by CSR.

For more information about CSR, contact your local service provider or go to the CSR website: www.hpe.com/support/selfrepair

Remote support

Remote support is available with supported devices as part of your warranty, Care Pack Service, or contractual support agreement. It provides intelligent event diagnosis, and automatic, secure submission of hardware event notifications to Hewlett Packard Enterprise, which will initiate a fast and accurate resolution based on your product's service level. Hewlett Packard Enterprise strongly recommends that you register your device for remote support.

For more information and device support details, go to the following website: www.hpe.com/info/insightremotesupport/docs

Documentation feedback

Hewlett Packard Enterprise is committed to providing documentation that meets your needs. To help us improve the documentation, send any errors, suggestions, or comments to Documentation Feedback (docsfeedback@hpe.com). When submitting your feedback, include the document title, part number, edition, and publication date located on the front cover of the document. For online help content, include the product name, product version, help edition, and publication date located on the legal notices page.
Index

A
accessing
 IRF fabric, 19
application
 IRF fabric ARP MAD application scenario, 10
 IRF fabric BFD MAD application scenario, 9
 IRF fabric LACP MAD application scenario, 8
 IRF fabric ND MAD application scenario, 11
ARP
 MAD. See ARP MAD
ARP MAD
 IRF ARP MAD configuration, 29
 IRF ARP MAD configuration (Ethernet port), 29
 IRF ARP MAD configuration (management Ethernet port), 30
 IRF fabric ARP MAD, 10
 IRF fabric ARP MAD configuration, 43
assigning
 IRF device member IDs, 15
auto
 IRF software auto-update, 24
B
backing up
 IRF configuration backup, 14
BFD
 MAD. See BFD MAD
BFD MAD
 IRF BFD MAD configuration, 27
 IRF BFD MAD configuration (Ethernet port), 27
 IRF BFD MAD configuration (management Ethernet port), 28
 IRF fabric BFD MAD, 9
 IRF fabric BFD MAD configuration, 39
binding
 IRF physical interface+port, 17
bridging
 IRF bridge MAC address, 22
 IRF bridge MAC persistence, 23
bulk
 IRF basic settings bulk configuration, 20
C
CLI
 IRF fabric access CLI login, 19
collision handling (IRF), 7
configuring
 IRF ARP MAD, 29
 IRF ARP MAD (Ethernet port), 29
 IRF ARP MAD (management Ethernet port), 30
 IRF basic settings bulk configuration, 20
 IRF BFD MAD, 27
 IRF BFD MAD (Ethernet port), 27
 IRF BFD MAD (management Ethernet port), 28
 IRF bridge MAC address, 22
 IRF bridge MAC persistence, 23
 IRF fabric, 14, 35
 IRF fabric ARP MAD, 43
 IRF fabric BFD MAD, 39
 IRF fabric LACP MAD, 35
 IRF fabric ND MAD, 47
 IRF LACP MAD, 26
 IRF link load sharing mode, 21
 IRF link load sharing mode (global), 21
 IRF link load sharing mode (port-specific), 21
 IRF MAD, 25
 IRF member device description, 20
 IRF ND MAD, 31
connecting
 IRF physical interface, 16
D
detecting
 IRF fabric ARP MAD, 10
 IRF fabric BFD MAD, 9
 IRF fabric failure recovery, 7
 IRF fabric LACP MAD, 8
 IRF fabric ND MAD, 11
 IRF MAD handling procedure, 6
device
 IRF ARP MAD configuration, 29
 IRF basic settings bulk-configuration, 20
 IRF bridge MAC address, 22
 IRF bridge MAC persistence, 23
 IRF device member priority, 16
 IRF fabric access, 19
 IRF fabric ARP MAD configuration, 43
 IRF fabric BFD MAD configuration, 39
 IRF fabric configuration, 14, 35
 IRF fabric hardware compatibility, 12
 IRF fabric LACP MAD configuration, 35
 IRF fabric ND MAD configuration, 47
 IRF fabric recovery, 32
fabric feature restrictions, 13
fabric hardware compatibility, 12
fabric LACP MAD configuration, 35
fabric ND MAD configuration, 47
fabric physical interface restrictions, 12
fabric port connection restrictions, 13
fabric recovery, 32
fabric setup, 1, 15
fabric transceiver modules+cables restrictions, 13
LACP MAD, 8
LACP MAD configuration, 26
link
down report delay, 24
loop elimination mechanism, 5
MAD, 2
MAD configuration, 25
MAD detection, 6
MAD handling procedure, 6
MAD mechanism, 7
master election, 6
member device description, 20
member ID, 2
member priority, 4
member role, 2
merge, 3
naming conventions (file system), 4
naming conventions (interface), 4
ND MAD, 11
ND MAD configuration, 31
network topology, 2
physical interface, 2
physical interface connection, 16
physical interface+port bind, 17
port, 2
port/interface shutdown exclusion, 32
software auto-update enable, 24
split, 3
LACP MAD. See LACP MAD
LACP MAD
IRF fabric LACP MAD, 8
IRF fabric LACP MAD configuration, 35
IRF LACP MAD configuration, 26
link
IRF fabric recovery, 32
IRF link down report delay, 24
IRF link load sharing mode, 21
load sharing
IRF mode configuration, 21
local
IRF fabric access local login, 19
loop eliminating
IRF loop elimination mechanism, 5
M
MAC
IRF bridge MAC address, 22
MAC addressing
IRF bridge MAC address, 22, 22
IRF bridge MAC persistence, 23
MAD
ARP. See ARP MAD
BFD. See BFD MAD
IRF fabric recovery, 32
IRF MAD, 2
IRF MAD configuration, 25
IRF MAD detection, 6
LACP. See LACP MAD
ND. See ND MAD
master
IRF master election, 6
member
IRF device member ID assignment, 15
IRF device member priority, 16
IRF fabric access, 19
IRF member device description, 20
IRF member ID, 2
IRF member priority, 4
IRF member role, 2
IRF physical interface connection, 16
IRF physical interface+port bind, 17
merging
IRF master election, 6
IRF merge, 3
multi-active detection. Use MAD
N
naming
IRF naming conventions (file system), 4
IRF naming conventions (interface), 4
ND MAD. See ND MAD
ND MAD
IRF fabric ND MAD, 11
IRF fabric ND MAD configuration, 47
IRF ND MAD configuration, 31
network
IRF ARP MAD configuration, 29
IRF ARP MAD configuration (Ethernet port), 29
IRF ARP MAD configuration (management Ethernet port), 30
IRF basic settings bulk-configuration, 20
IRF BFD MAD configuration, 27
IRF BFD MAD configuration (Ethernet port), 27
IRF BFD MAD configuration (management Ethernet port), 28
IRF configuration synchronization, 5
IRF fabric ARP MAD, 10
IRF fabric ARP MAD configuration, 43
IRF fabric BFD MAD, 9
IRF fabric BFD MAD configuration, 39
IRF fabric configuration, 14
IRF fabric LACP MAD, 8
IRF fabric LACP MAD configuration, 35
IRF fabric ND MAD, 11
IRF fabric ND MAD configuration, 47
IRF fabric recovery, 32
IRF fabric setup, 15
IRF LACP MAD configuration, 26
IRF link down report delay, 24
IRF loop elimination mechanism, 5
IRF MAD configuration, 25
IRF MAD handling procedure, 6
IRF MAD mechanism, 7
IRF master election, 6
IRF naming conventions (file system), 4
IRF naming conventions (interface), 4
IRF ND MAD configuration, 31
IRF port/interface shutdown exclusion, 32
IRF software auto-update enable, 24

network management
IRF fabric configuration, 35
IRF fabric setup, 1
IRF network topology, 2

P
physical
IRF physical interface, 2
IRF physical interface connection, 16
IRF physical interface+port bind, 17

physical interface
IRF expansion interface card remove restrictions, 34
IRF expansion interface card replace restrictions, 34
IRF fabric restrictions, 12
IRF fabric transceiver modules+cables restrictions, 13
planning
IRF fabric setup, 15

port
IRF fabric connection restrictions, 13
IRF link load sharing mode (port-specific), 21
IRF physical interface+port bind, 17
IRF port, 2
IRF port shutdown exclusion, 32

priority
IRF device member priority, 16
IRF member priority, 4

procedure
accessing IRF fabric, 19
assigning IRF device member IDs, 15
binding IRF physical interface+port, 17
bulk-configuring IRF basic settings, 20
configuring IRF ARP MAD, 29
configuring IRF ARP MAD (Ethernet port), 29
configuring IRF ARP MAD (management Ethernet port), 30
configuring IRF BFD MAD, 27
configuring IRF BFD MAD (Ethernet port), 27
configuring IRF BFD MAD (management Ethernet port), 28
configuring IRF bridge MAC address, 22
configuring IRF bridge MAC persistence, 23
configuring IRF fabric, 14
configuring IRF fabric ARP MAD, 43
configuring IRF fabric BFD MAD, 39
configuring IRF fabric LACP MAD, 35
configuring IRF fabric ND MAD, 47
configuring IRF LACP MAD, 26
configuring IRF link load sharing mode, 21
configuring IRF link load sharing mode (global), 21
configuring IRF link load sharing mode (port-specific), 21
configuring IRF MAD, 25
configuring IRF member device description, 20
configuring IRF ND MAD, 31
connecting IRF physical interface, 16
displaying IRF fabric, 34
enabling IRF software auto-update, 24
excluding IRF port/interface from shutdown action, 32
planning IRF fabric setup, 15
recovering IRF fabric, 32
setting IRF link down report delay, 24
specifying IRF bridge MAC address, 22
specifying IRF device member priority, 16

R
recovering
IRF fabric, 32
IRF fabric failure recovery, 7
remote
 IRF fabric access remote login, 19
restrictions
 IRF expansion interface card remove, 34
 IRF expansion interface card replace, 34
 IRF fabric configuration, 12
 IRF fabric features, 13
 IRF fabric physical interface, 12
 IRF fabric port connection, 13
 IRF fabric transceiver modules+cables, 13
role
 IRF member role, 2
S
setting
 IRF link down report delay, 24
setting up
 IRF fabric, 1
shutting down
 IRF port/interface shutdown exclusion, 32
software
 IRF software auto-update, 24
specifying
 IRF bridge MAC address, 22
 IRF device member priority, 16
split
 IRF fabric ARP MAD, 10
 IRF fabric BFD MAD, 9
 IRF fabric LACP MAD, 8
 IRF fabric ND MAD, 11
 IRF fabric recovery, 32
 IRF master election, 6
 IRF split, 3
synchronizing
 IRF configuration synchronization, 5
 IRF software auto-update, 24
T
topology
 IRF fabric ARP MAD configuration, 43
 IRF fabric BFD MAD configuration, 39
 IRF fabric configuration, 14, 35
 IRF fabric LACP MAD configuration, 35
 IRF fabric ND MAD configuration, 47
 IRF fabric setup, 1
 IRF master election, 6
 IRF network topology, 2
U
updating
 IRF software auto-update, 24
V
virtual technologies
 IRF ARP MAD configuration, 29
 IRF ARP MAD configuration (Ethernet port), 29
 IRF ARP MAD configuration (management Ethernet port), 30
 IRF basic concepts, 2
 IRF basic settings bulk-configuration, 20
 IRF BFD MAD configuration, 27
 IRF BFD MAD configuration (Ethernet port), 27
 IRF BFD MAD configuration (management Ethernet port), 28
 IRF bridge MAC address, 22, 22
 IRF bridge MAC persistence, 23
 IRF configuration synchronization, 5
 IRF device member ID assignment, 15
 IRF device member priority, 16
 IRF fabric access CLI login, 19
 IRF fabric ARP MAD, 10
 IRF fabric ARP MAD configuration, 43
 IRF fabric BFD MAD, 9
 IRF fabric BFD MAD configuration, 39
 IRF fabric configuration, 35
 IRF fabric display, 34
 IRF fabric hardware compatibility, 12
 IRF fabric LACP MAD, 8
 IRF fabric LACP MAD configuration, 35
 IRF fabric ND MAD, 11
 IRF fabric ND MAD configuration, 47
 IRF fabric recovery, 32
 IRF fabric setup, 1, 15
 IRF LACP MAD configuration, 26
 IRF link down report delay, 24
 IRF link load sharing mode, 21
 IRF loop elimination mechanism, 5
 IRF MAD configuration, 25
 IRF MAD handling procedure, 6
 IRF MAD mechanism, 7
 IRF master election, 6
 IRF member device description, 20
 IRF naming conventions (file system), 4
 IRF naming conventions (interface), 4
 IRF ND MAD configuration, 31
 IRF network topology, 2
 IRF physical interface connection, 16
 IRF physical interface+port bind, 17
 IRF port/interface shutdown exclusion, 32
 IRF software auto-update, 24
VLAN
IRF ARP MAD configuration, 29
IRF ARP MAD configuration (Ethernet port), 29
IRF ARP MAD configuration (management Ethernet port), 30
IRF BFD MAD configuration, 27
IRF BFD MAD configuration (Ethernet port), 27
IRF BFD MAD configuration (management Ethernet port), 28
IRF ND MAD configuration, 31
IRF port/interface shutdown exclusion, 32