HP 2530 Switch Series
Installation and Getting Started Guide

HP 2530-24G-2SFP+ Switch (J9856A)
HP 2530-48G-2SFP+ Switch (J9855A)
HP 2530-24G-PoE+-2SFP+ Switch (J9854A)
HP 2530-48G-PoE+-2SFP+ Switch (J9853A)

Power over Ethernet
Publication Number
5098-5297
August 2014

Applicable Products

HP 2530-24G-2SFP+ Switch (J9856A)
HP 2530-48G-2SFP+ Switch (J9855A)
HP 2530-24G-PoE+2SFP+ Switch (J9854A)
HP 2530-48G-PoE+2SFP+ Switch (J9853A)

Disclaimer
HEWLETT-PACKARD COMPANY MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

Warranty
For the latest license and warranty information, visit www.hp.com/networking/support.

A copy of the specific warranty terms applicable to your Hewlett-Packard products and replacement parts can be obtained from your HP Sales and Service Office or authorized dealer.

Safety
Before installing and operating these products, please read the “Installation Precautions” in chapter 2, “Installing the Switch”, and the safety statements in the General Safety and Regulatory Information booklet included with the product.
Contents

1 Introducing the Switch

Front of the Switch ... 1-4
 Network Ports ... 1-5
 LEDs ... 1-5
 Port LEDs .. 1-7
 LED Mode Select Button and Indicator LEDs 1-8
 Reset Button ... 1-9
 Clear Button ... 1-9
 Console Port ... 1-9
Back of the Switch .. 1-10
 Power Connector ... 1-10
Switch Features ... 1-11
 Save Power Mode ... 1-12

2 Installing the Switch

Included Parts .. 2-1
 Installation Precautions .. 2-3
Installation Procedures ... 2-4
 1. Prepare the Installation Site 2-5
 2. Verify the Switch Passes Self Test 2-6
 LED Behavior ... 2-7
 3. Mount the Switch .. 2-8
 Rack or Cabinet Mounting .. 2-8
 Rack Mounting the Switch 2-9
 Wall or Under-Table Mounting 2-11
 Horizontal Surface Mounting 2-12
 4. Connect the Switch to a Power Source 2-12
 5. Connect the Network Cables 2-13
 Using the RJ-45 Connectors 2-13
Contents

6. Installing or Removing SFPs .. 2-14
 Installing the SFPs: ... 2-14
 Removing the SFPs .. 2-15
 Connecting Cables to SFPs 2-15

7. (Optional) Connect a Console to the Switch 2-15
 Terminal Configuration 2-16
 Direct Console Access .. 2-17

Sample Network Topologies 2-19
 As a Desktop Switch Implementing PoE 2-19
 As a Segment Switch Implementing PoE 2-20
 Stacking the Switch ... 2-22

3 Configuring the Switch
 Recommended Minimal Configuration 3-1
 Using the Console Setup Screen 3-2
 Where to Go From Here .. 3-3

 Using the IP Address for Remote Switch Management 3-5
 Starting a Telnet Session 3-5
 Starting a Web Browser Session 3-5

4 Troubleshooting
 Basic Troubleshooting Tips 4-1
 Diagnosing with the LEDs 4-4
 LED patterns for General Switch Troubleshooting 4-4
 LED Patterns for PoE Troubleshooting 4-8
 Proactive Networking .. 4-9
 Hardware Diagnostic Tests 4-10
 Testing the Switch by Resetting It 4-10
 Checking the Switch LEDs 4-10
 Checking Console Messages 4-10
 Testing Twisted-Pair Cabling 4-11
 Testing Switch-to-Device Network Communications 4-11
 Testing End-to-End Network Communications 4-11
 Restoring the Factory Default Configuration 4-12
 Downloading New Switch Software 4-13
A Specifications

Switch Specifications ... A-1
 Physical .. A-1
 Electrical ... A-1
 Environmental ... A-2
 Acoustics .. A-2
 Safety .. A-2
Standards .. A-3
Cabling and Technology Information Specifications A-4
 Technology Distance Specifications A-6
Mode Conditioning Patch Cord A-7
 Installing the Patch Cord A-7
Twisted-Pair Cable/Connector Pin-Outs A-9
 Straight-through Twisted-Pair Cable for
 10 Mbps or 100 Mbps Network Connections A-11
 Cable Diagram ... A-11
 Pin Assignments .. A-11
 Crossover Twisted-Pair Cable for
 10 Mbps or 100 Mbps Network Connection A-12
 Cable Diagram ... A-12
 Pin Assignments .. A-12
 Straight-Through Twisted-Pair Cable for
 1000 Mbps Network Connections A-13
 Cable Diagram ... A-13
 Pin Assignments .. A-13

B Safety and EMC Regulatory Statements

Safety Information ... B-1
Informations concernant la sécurité B-2
Hinweise zur Sicherheit .. B-3
Considerazioni sulla sicurezza B-4
Consideraciones sobre seguridad B-5
Contents

Safety Information (Japan) B-6
Safety Information (China) B-7
EMC Regulatory Statements B-8
 U.S.A. B-8
 Canada B-8
 Australia/New Zealand B-8
 Japan B-8
 Korea B-9
 Taiwan B-9

Index
Introducing the Switch

The HP 2530 Switch Series are multiport switches that can be used to build high-performance switched workgroup networks. These switches are store-and-forward devices that offer low latency for high-speed networking. These switches also support the IEEE 802.3at standard for providing PoE+ power to connected devices.

HP 2530-24G-PoE+-2SFP+ Switch (J9854A)

HP 2530-48G-PoE+-2SFP+ Switch (J9853A)

HP 2530-24G-2SFP+ Switch (J9856A)

HP 2530-48G-2SFP+ Switch (J9855A)

Throughout this manual, these switches will be referred to as the 2530-24G-2SFP+, 2530-48G-2SFP+, 2530-24G-PoE+-2SFP+, 2530-48G-PoE+-2SFP+.

- The 2530-24G-2SFP+ and 2530-24G-PoE+-2SFP+ switches have 24 auto-sensing 10/100/1000BASE-T RJ-45 ports, and two SFP+ slots for supported HP SFP and SFP+ transceivers (ports 25-26).
Introducing the Switch

- The HP 2530-48G-2SFP+ and HP 2530-48G-PoE+-2SFP+ switches have 48 auto-sensing 10/100/1000BASE-T RJ-45 ports, and two SFP+ slots for supported HP SFP and SFP+ transceivers (ports 49-50).

- **Power-over-Ethernet or PoE power** - The HP 2530-24G-PoE+-2SFP+ and HP 2530-48G-PoE+-2SFP+ switches support the IEEE 802.3 at standard, which allows IP telephones, wireless LAN Access Points, and other appliances to receive power as well as data over existing LAN cabling, without needing to modify the existing Ethernet infrastructure.

- The HP 2530-24G-PoE+-2SFP+ and 2530-48G-PoE+-2SFP+ switches are designed with an internal PoE power supply capable of providing 370 watts of PoE power (HP 2530-48G-PoE+-2SFP+), 190 watts (HP 2530-24G-PoE+-2SFP+), each switch port can provide up to 30 watts (7.5 watts if all ports are used) of PoE power to connected devices. For further information regarding PoE power, see the *HP Power over Ethernet (PoE/PoE+) Planning and Implementation Guide*, which is on the HP Web site at www.hp.com/networking/support.

These switches can be directly connected to computers, printers, and servers to provide dedicated bandwidth to those devices, and you can build a switched network infrastructure by connecting the switch to hubs, other switches, or routers. In addition, these switches can be fully managed by HP SNMP-based and browser-based network management tools.

Using HP SFPs, these products support optional network connectivity with the following speeds and technologies:

1-2
<table>
<thead>
<tr>
<th>Speed</th>
<th>Technology</th>
<th>Cabling</th>
<th>SFP Connector</th>
<th>SFP+ Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Gbps</td>
<td>10-Gig Direct Attach</td>
<td>Copper (twinaxial)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-Gig SR</td>
<td>Fiber (multimode)</td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>10-Gig LRM</td>
<td>Fiber (multimode)</td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>10-Gig LR</td>
<td>Fiber (single mode)</td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>10-Gig ER</td>
<td>Fiber (single mode)</td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td>1 Gbps</td>
<td>1000-T</td>
<td>Copper (twisted-pair)</td>
<td>RJ-45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000-SX</td>
<td>Fiber (multimode)</td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>1000-LX</td>
<td>Fiber (multimode or single mode)</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000-LH</td>
<td>Fiber (single mode)</td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>1000-BX</td>
<td>Fiber (single mode)</td>
<td></td>
<td>LC</td>
</tr>
</tbody>
</table>

1 For supported transceivers, visit www.hp.com/networking/support.

– In the first textbox, type J8436 (for 10-Gigabit information).
– Select any of the products that display in the dropdown list. Then click Display selected.
– Select Product support information. Then click Manuals and find the Transceiver Support Matrix.

For technical details of cabling and technologies see “Cabling and Technology Information Specifications” in the appendix A.
Introducing the Switch

Front of the Switch

The following images represent the characteristics of the HP 2530 24-port and 48-port Gigabit switches with SFP+ uplink ports.

HP 2530-24G-PoE+-2SFP+ Switch (J9854A)

1. All 10/100/1000BASE-T RJ-45 ports have the Auto-MDIX feature.

HP 2530-48G-PoE+-2SFP+ Switch (J9853A)

1. All 10/100/1000BASE-T RJ-45 ports have the Auto-MDIX feature.

The following table explains the characteristics of the HP 2530 24-port and 48-port Gigabit switches with SFP+ uplink ports:
Introducing the Switch

Front of the Switch

Table 1-2. HP 2530 24-port and 48-port switches with SFP+ uplink ports

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power, Fault, and Locator LEDs</td>
</tr>
<tr>
<td>2</td>
<td>Test and Status LEDs</td>
</tr>
<tr>
<td>3</td>
<td>Switch port LEDs</td>
</tr>
<tr>
<td>4</td>
<td>SFP+ slots</td>
</tr>
<tr>
<td>5</td>
<td>10/100/1000BASE-T RJ-45 ports</td>
</tr>
<tr>
<td>6</td>
<td>LED Mode select button and indicator LEDs</td>
</tr>
<tr>
<td>7</td>
<td>Reset and Clear buttons</td>
</tr>
<tr>
<td>8</td>
<td>Console Port</td>
</tr>
</tbody>
</table>

Network Ports

- 24 or 48 auto-sensing 10/100/1000BASE-T ports.
 All these ports have the “Auto-MDI” feature, which means that you can use either straight-through or crossover twisted-pair cables to connect any network devices to the switch.
- Two SFP+ slots for fiber or copper uplinks (24-port and 48-port Gigabit Ethernet switches).

LEDs

On these Switches, there are three groupings of LEDs:

- switch status LEDs (Table 1-3)
- port LEDs (Table 1-4)
- Port LED Mode indicator LEDs (near the selector button) (Table 1-5)
Table 1-3. Switch Status LEDs

<table>
<thead>
<tr>
<th>Switch LEDs</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (green)</td>
<td>On</td>
<td>The internal power supply is working properly.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No power connection. The switch is NOT receiving power.</td>
</tr>
<tr>
<td>Fault (orange)</td>
<td>Off</td>
<td>The normal state; indicates there are no fault conditions on the switch.</td>
</tr>
<tr>
<td></td>
<td>Flashing(^2)</td>
<td>A fault has occurred with a component on the switch. The Status LED for the component with the fault will flash simultaneously.</td>
</tr>
<tr>
<td></td>
<td>On</td>
<td>On briefly after the switch is powered on or reset, at the beginning of switch self test. If this LED is on for a prolonged time, the switch has encountered a fatal hardware failure, or has failed its self test. See chapter 4, “Troubleshooting” for more information.</td>
</tr>
<tr>
<td>Locator (blue)</td>
<td>On flashing</td>
<td>The Locator LED is used to locate a specific switch in an area full of switches. The LED can be set to be on solid or flash for a specified number of minutes (1-1440). The default is 30 minutes. Use the command “chassislocate”.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The normal operational state; the switch is not undergoing self test.</td>
</tr>
<tr>
<td>PoE (green/orange)</td>
<td>On green</td>
<td>Normal operation. The switch is ready to supply PoE power.</td>
</tr>
<tr>
<td></td>
<td>Flashing orange(^1)</td>
<td>One or more ports has experienced a fault condition for PoE delivery. The Fault LED will be flashing simultaneously. If it is a self test failure, the Test LED will be flashing simultaneously. When the switch is put in PoE LED Mode, the Mode LED for the port with the problem will also be flashing simultaneously.</td>
</tr>
<tr>
<td></td>
<td>Flashing orange(^2)</td>
<td>One or more ports has an alert condition for PoE delivery, for example, an oversubscription condition (not enough PoE power available). Only this LED will be flashing, the Fault LED is off. When the switch is put in PoE LED Mode, the Mode LEDs for the ports with the alert condition will also be flashing.</td>
</tr>
<tr>
<td>Fan (green/orange)</td>
<td>On green</td>
<td>The cooling fan is operating normally.</td>
</tr>
<tr>
<td></td>
<td>Flashing orange(^3)</td>
<td>The cooling fan has failed. The switch Fault LED will be flashing simultaneously.</td>
</tr>
<tr>
<td>Test (green/orange)</td>
<td>Off</td>
<td>The normal operational state; the switch is not undergoing self test.</td>
</tr>
<tr>
<td></td>
<td>On green</td>
<td>The switch self test and initialization are in progress after the switch has been power cycled or reset. The switch is not operational until this LED goes off. The Test LED also comes on briefly when you “hot swap” an SFP into the switch; the SFP is tested when it is hot swapped.</td>
</tr>
<tr>
<td></td>
<td>Flashing orange(^4)</td>
<td>A component of the switch has failed its self test. The switch Fault LED, Test LED, and the failed component LED will flash simultaneously.</td>
</tr>
</tbody>
</table>

\(^1\) The flashing behavior is an on/off cycle once every 0.8 seconds approximately, a fast flash.
\(^2\) The flashing behavior is an on/off cycle once every 1.6 seconds approximately, a slow flash.
Port LEDs

The port LEDs provide information about the individual switch ports.

Table 1-4. Port LEDs

<table>
<thead>
<tr>
<th>Switch LEDs</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port LEDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link(^2) (green)</td>
<td>On</td>
<td>The port is enabled and receiving a link indication from the connected device. In PoE mode, indicates that the port is configured to enable PoE power delivery to the connected device.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>One of these conditions exists:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no active network cable is connected to the port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• the port is not receiving link beat or sufficient light</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• the port has been disabled through the switch console, the Web browser interface, HP PCM, or other network management tool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In PoE mode, indicates that the port is configured such that PoE power delivery is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Save power mode is enabled.</td>
</tr>
<tr>
<td></td>
<td>Flashing(^1)</td>
<td>The port has failed self test. The switch Fault, and Self Test LEDs will flash simultaneously.</td>
</tr>
<tr>
<td>Mode (green)(^2)</td>
<td>Depending on the mode selected, displays the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• network activity information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• connection duplex mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• connection speed information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PoE power delivery status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See “LED Mode Select Button and Indicator LEDs:” below for more information.</td>
</tr>
</tbody>
</table>

SFP LEDs		
	Link\(^2\) (green)	One of the following conditions exist:
	Flashing green	• the SFP is not supported by the current switch software
		• the SFP is not a genuine HP SFP and is not supported
		• the SFP is an “A” version in a switch that requires a “B” version or later.
	Link and Mode\(^2\) (green)	On for 2 seconds Both the Link and Mode LED turn on solid for 2 seconds and then go to normal operation. This indicates the SFP has been recognized by the switch.

\(^1\) The flashing behavior is an on/off cycle once every 1.6 seconds, approximately.

\(^2\) These LEDs are turned off when Save Power mode is enabled. If Save Power mode is enabled and the LEDs are turned off, they can be turned on temporarily through the LED Mode button.
LED Mode Select Button and Indicator LEDs

To optimize the amount of information that can be displayed for each of the switch ports in the limited space available, these Switches use multiple-display LEDs for each port.

These Switches have two LEDs per port. The Link LED shows the port link status in all modes except PoE mode. In PoE mode, it shows whether the port is configured to provide PoE power. The operation of the Mode LED is controlled by the LED Mode select button, and the current setting is indicated by the LED Mode indicator LEDs near the button. Press the button to step from one view mode to the next. The default view is Activity (Act).

Table 1-5. Multiple-Display Port LEDs

<table>
<thead>
<tr>
<th>Switch LEDs</th>
<th>Mode</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Mode indicator LEDs (4 green LEDs)</td>
<td>Act</td>
<td>Indicates the Port LEDs are displaying network activity information.</td>
</tr>
<tr>
<td></td>
<td>FDx</td>
<td>Indicates the Port LEDs are lit for ports that are in full-duplex mode.</td>
</tr>
</tbody>
</table>
| | Spd | Indicates the Port LEDs are displaying the connection speed at which each port is operating:
| | | • if the Port LED is off, the port is operating at 10 Mbps.
| | | • if the Port LED is flashing, the port is operating at 100 Mbps.
| | | • if the Port LED is on continuously, the port is operating at 1000 Mbps. |
| | PoE | Indicates the Port LEDs are lit for ports that are providing PoE power to the connected device. |

When Save Power mode is enabled and all port LEDs are off, press the LED Mode select button to turn the port LEDs on. Press the LED Mode select button again to step through each view mode. Press the LED Mode select button after the PoE view mode to turn LEDs off.

If the port LEDs are left on when Save Power mode is enabled, they turn off automatically after 10 minutes.
Reset Button

This button is for:

- **Resetting the switch** - When the switch is powered on. This action clears any temporary error conditions that may have occurred and executes the switch self test.

- **Restoring Factory Default Configuration** - When pressed with the Clear button in a specific pattern, any configuration changes you may have made through the switch console, the Web browser interface, and SNMP management are removed, and the factory default configuration is restored to the switch. For the specific method to restore the factory default configuration, see “Restoring the Factory Default Configuration” on page 4-12 of this manual.

Clear Button

This button is used for:

- **Deleting Passwords** - When pressed by itself for at least one second, the button deletes any switch console access passwords that you may have configured. Use this feature if you have misplaced the password and need console access. This button is provided as a convenience, however if you are concerned with the security of the switch configuration and operation, you should make sure the switch is installed in a secure location. This button can be disabled by a CLI command.

- **Restoring Factory Default Configuration** - See Reset Button above.

Console Port

This port is used to connect a console to the switch by using the RJ-45 to DB9 cable, supplied with the switch. This connection is described under “7. (Optional) Connect a Console to the Switch” on page 2-15 in chapter 2, “Installing the Switch.” The console can be a PC or workstation running a VT-100 terminal emulator, or a VT-100 terminal.

You can also connect a console to the switch using the Micro USB console port (cable not provided). Use a USB 2.0 high-speed cable with male type A (4-pin) to male micro-B (5-pin) connectors. The maximum allowable length is 5 meters.
Introducing the Switch
Back of the Switch

Back of the Switch

HP 2530-24G-2SFP+ Switch (J9856A)
HP 2530-48G-2SFP+ Switch (J9855A)
HP 2530-24G-PoE+-2SFP+ Switch (J9854A)

HP 2530-48G-PoE+-2SFP+ Switch (J9853A)

Power Connector

These 24-port and 48-port switches do not have a power switch; they are powered on when connected to an active AC power source. The switches automatically adjust to any voltage between 100-127 and 200-240 volts and either 50 or 60 Hz. There are no voltage range settings required.
Switch Features

The following are the features of the Switches:

- 24 or 48 auto-sensing 10/100/1000BASE-T RJ-45 ports with Auto-MDIX.
- Two SFP+ uplink slots supporting HP SFP and SFP+ transceivers.
- PoE+ operation—the switches are IEEE 802.3 at compliant and provide up to 30W per port to power IP phones, wireless access points, Web cameras, and more. For more information, see the *HP Power over Ethernet (PoE/PoE+) Planning and Implementation Guide*, which is on the HP Web site at www.hp.com/networking/support.
- The switches support some pre-standard PoE devices. However, the use of a cross-over cable may be required.
- Plug-and-play networking—all ports are enabled—just connect the network cables to active network devices and your switched network is operational.
- Auto-MDIX on all twisted-pair ports, meaning that all twisted-pair connections can be made using straight-through cables. Cross-over cables are not required, although they will also work.
- Automatic learning of the hardware addresses in each switch’s 16000-address forwarding table, (with configurable address aging value).
- Automatically negotiated full-duplex operation for the 10/100/1000 RJ-45 ports when connected to other auto-negotiating devices.
- A “Save Power” mode option that keeps port LEDs turned off except for when the LED Mode select button is pressed.
- An automatic low-power mode for ports when a link is not present.
- Easy management of the switches through several available interfaces:
 - **Console interface** — a full featured, easy to use, VT-100 terminal interface that is especially good for out-of-band switch management or for Telnet access to the switch.
 - **Web browser interface** — an easy to use built-in graphical interface that can be accessed from common Web browsers.
 - **SNMP-based network management**:
 - **HP PCM/PCM+** — a graphical network management tool that you can use to manage your entire small to medium-sized network.
Introducing the Switch
Switch Features

- **Intelligent Management Center (IMC)** — the HP graphics network management tool intended to manage any sized network. IMC support for these switches is planned for early 2013. Go to www.hp.com/networking to check on support availability.

 - Support for the Spanning Tree Protocol to eliminate network loops.
 - Support for up to 512 IEEE 802.1Q-compliant VLANs so you can divide the attached end nodes into logical groupings that fit your business needs.
 - Download of new switch software for product enhancements or bug fixes.
 - Variable speed fans ensure quiet operation.
 - Support for many advanced features to enhance network performance. For a description, see the *Management and Configuration Guide*, which is on the HP Web site at www.hp.com/networking/support. (You may want to bookmark this Web page for easy access in the future.)

Save Power Mode

A Save Power mode feature can be configured through the console. Save Power mode can be used to turn off port LEDs unless the LED Mode button is pressed. In addition, it can configure the LAN ports to operate at low power if a link is not detected.
Installing the Switch

This chapter provides installation information for the Switches.

Included Parts

These Switches have the following components:

- Documentation kit
 - Switch Quick Setup Guide
 - Safety and Regulatory information
 - Software License, Warranty, and Support information
- Console port serial cable (DB-9 to RJ-45)
- Accessory kits:

<table>
<thead>
<tr>
<th>Kit number 5066-2231</th>
<th>Kit number 5069-6535</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains:</td>
<td>Contains:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>two rack mounting brackets</td>
<td>two wall/table mounting brackets</td>
</tr>
<tr>
<td>two wall/table mounting brackets</td>
<td>eight 8-mm M4 screws to attach the mounting brackets to the switch</td>
</tr>
<tr>
<td>eight 8-mm M4 screws to attach the mounting brackets to the switch</td>
<td>four 5/8-inch number 12-24 screws to attach the switch to a rack</td>
</tr>
<tr>
<td>four 5/8-inch number 12-24 screws to attach the switch to a rack</td>
<td>four rubber feet</td>
</tr>
<tr>
<td>four rubber feet</td>
<td></td>
</tr>
</tbody>
</table>
Installing the Switch

Included Parts

- 24- and 48-port switch AC power cords, one of the following:
 - HP X410 Switch Rail Kit (J9583A).

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Switch Model</th>
<th>Switch Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HP 2530-24G-2SFP+</td>
<td>HP 2530-48G-PoE+-2SFP+ Switch¹</td>
</tr>
<tr>
<td></td>
<td>HP 2530-24G-PoE+-2SFP+, and</td>
<td>HP 2530-48G-PoE+-2SFP+ Switch¹</td>
</tr>
<tr>
<td></td>
<td>HP 2530-48G-2SFP+ Switch</td>
<td>HP 2530-48G-PoE+-2SFP+ Switch¹</td>
</tr>
<tr>
<td>Argentina</td>
<td>8120-6869</td>
<td>8120-8375</td>
</tr>
<tr>
<td>Australia/New Zealand</td>
<td>8121-0834</td>
<td>8121-0857</td>
</tr>
<tr>
<td>Brazil</td>
<td>8121-1069</td>
<td>8121-1132</td>
</tr>
<tr>
<td>Chile</td>
<td>8120-6980</td>
<td>8120-8389</td>
</tr>
<tr>
<td>China</td>
<td>8120-8377</td>
<td>8121-1034</td>
</tr>
<tr>
<td>Continental Europe</td>
<td>8120-6802</td>
<td>8120-5336</td>
</tr>
<tr>
<td>Denmark</td>
<td>8120-6806</td>
<td>8120-5340</td>
</tr>
<tr>
<td>India</td>
<td>8121-0780</td>
<td>8120-5341</td>
</tr>
<tr>
<td>Israel</td>
<td>8121-1035</td>
<td>8121-1009</td>
</tr>
<tr>
<td>Japan</td>
<td>8120-6804</td>
<td>8120-5342</td>
</tr>
<tr>
<td>Malaysia</td>
<td>8120-6809</td>
<td>8120-5334</td>
</tr>
<tr>
<td>Switzerland</td>
<td>8120-6807</td>
<td>8120-5339</td>
</tr>
<tr>
<td>South Africa</td>
<td>8121-0919</td>
<td>8120-5341</td>
</tr>
<tr>
<td>South Korea</td>
<td>8120-6811</td>
<td>8120-5336</td>
</tr>
<tr>
<td>Taiwan</td>
<td>8121-0964</td>
<td>8121-0967</td>
</tr>
<tr>
<td>Thailand</td>
<td>8121-0673</td>
<td>8121-0671</td>
</tr>
<tr>
<td>United Kingdom/Hong Kong/Singapore</td>
<td>8120-6809</td>
<td>8120-5334</td>
</tr>
<tr>
<td>United States/Canada/Mexico</td>
<td>8120-6805</td>
<td>8121-0973</td>
</tr>
</tbody>
</table>

¹ The power cord for the HP 2530-48G-PoE+-2SFP+Switch supports a higher amperage and uses a C15 connector.

Japan Power Cord Warning

製品には、同梱された電源コードをお使い下さい。
同梱された電源コードは、他の製品では使用出来ません。
Installation Precautions

WARNING
- The rack or cabinet should be adequately secured to prevent it from becoming unstable and/or falling over.

Devices installed in a rack or cabinet should be mounted as low as possible, with the heaviest devices at the bottom and progressively lighter devices installed above.

- Wall-mount the switches with network ports facing up or down. Do not mount the switches with the ventilation or fan ducts facing up or down.

Cautions
- When installing the switch, the AC outlet should be near the switch and should be easily accessible in case the switch must be powered off.

- Ensure the power source circuits are properly grounded.

- Use only the AC/DC power adapter and power cord (if applicable), supplied with the switch. Use of other adapters or power cords, including those that came with other HP Networking products, may result in damage to the equipment.

For those switches that use a power cord, if your installation requires a different power cord than the one supplied with the switch, be sure to use a power cord displaying the mark of the safety agency that defines the regulations for power cords in your country. The mark is your assurance that the power cord can be used safely with the switch.

- Ensure the switch does not overload the power circuits, wiring, and over-current protection. To determine the possibility of overloading the supply circuits, add together the ampere ratings of all devices installed on the same circuit as the switch and compare the total with the rating limit for the circuit. Maximum ampere ratings are usually printed on the devices near the AC power connectors.

- Do not install the switch in an environment where the operating ambient temperature might exceed 45°C (113°F). This includes a fully-enclosed rack. Ensure the air flow around the sides and back of the switch is not restricted. Leave at least 7.6 cm (3 inches) for cooling.

- Ensure all port covers are installed when the port is not in use.
Installation Procedures

These steps summarize your switch installation. The rest of this chapter provides details on these steps.

1. **Prepare the installation site** (page 2-5). Make sure the physical environment into which you will be installing the switch is properly prepared, including having the correct network cabling ready to connect to the switch and having an appropriate location for the switch. See page 2-3 for some installation precautions.

2. **Verify the switch passes self test** (page 2-6). Plug the switch into a power source and observe that the LEDs on the switch's front panel indicate correct switch operation.

3. **Mount the switch** (page 2-8). The switch can be mounted in a 19-inch telco rack, in an equipment cabinet, on a wall, under a table, or on a horizontal surface.

4. **Connect power to the switch** (page 2-12). Once the switch is mounted, plug it into the main power source.

5. **Connect the network devices** (page 2-13). Using the appropriate network cables, connect the network devices to the switch ports.

6. **(Optional) Install SFP and SFP+ transceivers** (page 2-14). The switch has two slots for installing transceivers. Depending on where you install the switch, it may be easier to install the transceivers first. Transceivers can be hot swapped—they can be installed or removed while the switch is powered on.

7. **(Optional) Connect a console to the switch** (page 2-15). You may wish to modify the switch's configuration, for example, to configure an IP address so it can be managed using a Web browser, from an SNMP network management station, or through a Telnet session. Configuration changes can be made by using the included console cable to connect a PC to the switch’s console port.

At this point, your switch is fully installed. See the rest of this chapter if you need more detailed information on any of these installation steps.
1. Prepare the Installation Site

- **Cabling Infrastructure** - Ensure the cabling infrastructure meets the necessary network specifications. See appendix A, “Cabling and Technology Information Specifications” for more information.

- **Installation Location** - Before installing the switch, plan its location and orientation relative to other devices and equipment:
 - In the front of the switch, leave at least 7.6 cm (3 inches) of space for the twisted-pair and fiber-optic cabling.
 - In the back of the switch, leave at least 3.8 cm (1 1/2 inches) of space for the power cord.
 - On the sides of the switch, leave at least 7.6 cm (3 inches) for cooling.
2. Verify the Switch Passes Self Test

Before mounting the switch in its network location, you should first verify it is working properly by plugging it into a power source and verifying it passes its self test.

1. For the 24-port and 48-port switches, connect the power cord supplied with the switch to the power connector on the back of the switch, and then into a properly grounded electrical outlet.

![Figure 2-1. Connecting the power cord](image)

Note

The 24-port and 48-port do not have a power switch. They are powered on when the power cord is connected to the switch and to a power source. For safety, the power outlet should be located near the switch installation.

The switch automatically adjusts to any voltage between 100-127 or 200-240 volts and either 50 or 60 Hz. There are no voltage range settings required.
2. Check the LEDs on the switch as described below.

![Diagram of switch LEDs](image)

Figure 2-2. Checking the LEDs

When the switch is powered on, it performs its diagnostic self test. Self test takes approximately 50 seconds to complete.

LED Behavior

During the self test:
- Initially, all the switch and port LEDs are on. Most of the LEDs go off and then come on again during phases of the self test.
- For the duration of the self test, the Test LED stays on.

When the self test completes successfully:
- The Power, PoE and Fan LEDs remain on.
- The Fault, Locator and Test LEDs stay off.
- The Act LED remains on indicating the default port LED mode.
- The port LEDs on the front of the switch go into their normal operational mode:
 - If the ports are connected to active network devices, the Link LEDs stay on and the Mode LEDs behave according to the mode selected. In the default mode (Act), the Mode LEDs should be blinking indicating port activity.
 - If the ports are not connected to active network devices, the Link and Mode LEDs will stay off.

If the LED display is different than what is described above, especially if the Fault and Test LEDs stay on for more than 60 seconds or they start flashing, the self test has not completed correctly. Refer to chapter 4,
“Troubleshooting” for diagnostic help.

3. Mount the Switch

After the switch passes self test, it is ready to be mounted in a stable location.
The switch can be mounted in these ways:

■ in a rack or cabinet
■ on a horizontal surface
■ under a table
■ on a wall

Rack or Cabinet Mounting

The switch is designed to be mounted in any EIA-standard 19-inch telco rack
or communication equipment cabinet.

The 24-port and 48-port switches can also be mounted in 4-post racks and
cabinets by using the HP X410 Switch Rail Kit (J9583A). For instructions on
using the kit, see the documentation that is included with the kit.

Note that some mounting brackets have multiple mounting holes and can be
rotated allowing for a wide variety of mounting options. Secure the rack in
accordance with the manufacture’s safety guidelines.

WARNING

For safe operation, please read the mounting precautions on
page 2-3, before mounting a switch.

Equipment Cabinet Note

The 12-24 screws supplied with the switch are the correct threading for
standard EIA/TIA open 19-inch racks. If installing the switch in an equipment
cabinet such as a server cabinet, use the clips and screws that came with the
cabinet in place of the 12-24 screws that are supplied with the switch.
Rack Mounting the Switch

1. Use a #1 Phillips (cross-head) screwdriver and attach the mounting brackets to the switch with the included 8-mm M4 screws.

Figure 2-3. Attaching mounting brackets

WARNING

For safe reliable installation, only use the screws provided in the accessory kit to attach the mounting brackets to the switch.

Note

The mounting brackets have multiple mounting holes and can be rotated allowing for a wide variety of mounting options. These include mounting the switch so that its front face is flush with the face of the rack, or mounting it in a more balanced position.
2. Hold the switch with attached brackets up to the rack and move it vertically until rack holes line up with the bracket holes, then insert and tighten the four number 12-24 screws holding the brackets to the rack.

Figure 2-4. Mounting in a rack
Wall or Under-Table Mounting

You can mount the 24-port and 48-port switches on a wall with either the front or rear panel facing up.

WARNING

For safe operation, do not install the switch with side ventilation or fan ducts facing up or down.

Caution

The switch should be mounted only to a wall or wood surface that is at least 1/2-inch (12.7 mm) plywood or its equivalent.

To mount the 24-port and 48-port switches, follow these steps:

1. Use a #1 Phillips (cross-head) screwdriver and attach the mounting brackets to the switch with the included 8-mm M4 screws.

2. Attach the switch to the wall or wood surface with two 5/8-inch number 12 wood screws (not included).

![Wall mounting of the switches](image)
Horizontal Surface Mounting

Place the switch on a table or other horizontal surface. The switch comes with rubber feet in the accessory kit that can be used to help keep the switch from sliding on the surface.

Attach the rubber feet to the four corners on the bottom of the switch within the embossed angled lines. Use a sturdy surface in an uncluttered area. You may want to secure the networking cables and switch power cord to the table leg or other part of the surface structure to help prevent tripping over the cords.

Caution

Ensure the air flow is not restricted around the sides and back of the switch.

4. Connect the Switch to a Power Source

1. Plug the included power cord into the switch's power connector and into a nearby AC power source.

![Figure 2-6. Connecting the power cord on the Switch](image)

2. Re-check the LEDs during self test. See “LED Behavior” on page 2-7.
5. Connect the Network Cables

Connect the network cables, described under “Cabling Infrastructure” (page 2-5), from the network devices or your patch panels to the fixed RJ-45 ports on the switch or to any SFPs you have installed in the switch.

Using the RJ-45 Connectors

To connect:
Push the RJ-45 plug into the RJ-45 port until the tab on the plug clicks into place. When power is on for the switch and for the connected device, the Link LED for the port should light to confirm a powered-on device (for example, an end node) is at the other end of the cable.

If the Link LED does not go on when the network cable is connected to the port, see “Diagnosing with the LEDs” in chapter 4, “Troubleshooting”.

To disconnect:
Press the small tab on the plug and pull the plug out of the port.
6. Installing or Removing SFPs

You can install or remove an SFP from an SFP slot without having to power off the switch. Use only HP SFPs (see Table 1-1 on page 1-3).

Caution

Hot swapping transceivers is supported. You can install or remove a transceiver with the switch powered on, a reset will not occur. However, rapid hotswaps are not recommended. Wait a few seconds for the Mode LED to turn on (during initialization), and then turn off.

Notes

Ensure the network cable is NOT connected when you install or remove an SFP.

Caution

Use only supported genuine HP SFPs with your switch. Non-HP SFPs are not supported, and their use may result in product malfunction. Should you require additional HP SFPs, contact your HP Networking Sales and Service Office or authorized dealer.

Installing the SFPs:

Remove the protective plastic cover and retain it for later use. Hold the SFP by its sides and gently insert it into any of the slots on the switch until the SFP clicks into place.

WARNING

The fiber-optic HP SFPs are Class 1 laser devices. Avoid direct eye exposure to the beam coming from the transmit port.

![Figure 2-8. Installing an SFP](image)
Installing the Switch

Installation Procedures

Removing the SFPs

Note
You should disconnect the network cable from the SFP before removing it from the switch.

Depending on when you purchased your HP SFP, it may have either of three different release mechanisms: a plastic tab on the bottom of the SFP, a plastic collar around the SFP, or a wire bail.

To remove the SFPs that have the plastic tab or plastic collar, push the tab or collar toward the switch until you see the SFP release from the switch (you can see it move outward slightly), and then pull it from the slot.

To remove the SFPs that have the wire bail, lower the bail until it is approximately horizontal, and then using the bail, pull the SFP from the slot.

Replace the protective plastic cover on the SFP.

Connecting Cables to SFPs

If you have any SFPs installed in the switch, the type of network connections you will need to use depends on the type of SFPs you have installed. See the table on page 1-3, and appendix A, “Specifications”, for the SFP cabling information.

For SFP ports, and in general for all the switch ports, when a network cable from an active network device is connected to the port, the port Link LED for that port should go on. If the port Link LED does not go on when the network cable is connected to the port, see “Diagnosing with the LEDs” in chapter 4, “Troubleshooting”.

7. (Optional) Connect a Console to the Switch

The switches have a full-featured, easy to use console interface for performing switch management tasks including the following:

- monitor switch and port status and observe network activity statistics
- modify the switch’s configuration to optimize switch performance, enhance network traffic control, and improve network security
- read the event log and access diagnostic tools to help in troubleshooting
- download new software to the switch
- add passwords to control access to the switch from the console, Web browser interface, and network management stations
Installing the Switch

Installation Procedures

The console can be accessed through these methods:

■ **Out-of-band:** The switches come with a serial cable for connecting a PC or VT-100 terminal, to be used as a console, directly to the switch’s RJ-45 Console Port.

There is also the option of using a USB cable (not supplied) to connect the switch’s Micro USB Console Port to a PC. To use the USB Console Port, you must first download a USB driver to the PC. See the Note on page 2-17 for more information.

Note that you cannot use both the RJ-45 Console Port and USB Console Port at the same time. When the USB Console Port is connected to a live PC, it has priority over the RJ-45 Console Port.

By default, the RJ-45 console port is active (accepts input). To activate the USB console port, connect it to a live PC. If the USB console session is closed by the inactivity timer, the RJ-45 console port becomes active again to allow remote access via a terminal server. To reactivate the USB console port, unplug it, then reconnect it to a live PC.

■ **In-Band:** Access the console using Telnet from a PC or UNIX station on the network, and a VT-100 terminal emulator. This method requires that you first configure the switch with an IP address and subnet mask by using either out-of-band console access or through DHCP/Bootp. For more information on IP addressing and on starting a Telnet session, see chapter 3, “Configuring the Switch”, in the *Management and Configuration Guide*, which is on the HP Web site at www.hp.com/networking/support.

The switches can simultaneously support one out-of-band console session through a Console Port and in-band Telnet console sessions.

Terminal Configuration

To connect a console to the switch, configure the PC terminal emulator as a DEC VT-100 (ANSI) terminal or use a VT-100 terminal, and configure either one to operate with these settings:

■ any baud rate from 1200 to 115200 (the switch senses the speed)

■ 8 data bits, 1 stop bit, no parity, and flow control set to off

■ for the Windows Terminal program, also disable (uncheck) the “Use Function, Arrow, and Ctrl Keys for Windows” option

■ for the Hilgraeve HyperTerminal program, select the “Terminal keys” option for the “Function, arrow, and ctrl keys act as” parameter
Installing the Switch

Installation Procedures

If you want to operate the console using a different configuration, make sure you change the settings on both the terminal and on the switch so they are compatible. Change the switch settings first, then change the terminal settings, then reboot the switch and reestablish the console session.

Note

USB Console Port Driver Download. When using the Micro USB Console Port, the connected PC first requires “virtual COM port” USB drivers to be installed. USB drivers are available for Windows XP, Windows Vista, and Windows 7.

USB console drivers are available at www.hp.com/networking/support. Type a product name (e.g. 2530) or product number in the Auto Search textbox. Select one of the switches from the drop-down list. Click the **Display selected** button. From the options that appear, select **Software downloads** (on the right-hand side). Download the “USB Console Port Drivers and Information.”

Direct Console Access

To connect a console to the switch, follow these steps:

1. Connect the PC or terminal to the switch’s Console Port using the console cable included with the switch. (If your PC or terminal has a 25-pin serial connector, first attach a 9-pin to 25-pin straight-through adapter at one end of the console cable.)

 Alternatively, connect the PC to the switch’s Micro USB Console Port using a USB cable (not supplied). Use a USB 2.0 high-speed cable with male type A (4-pin) to male micro-B (5-pin) connectors. The maximum allowable length is 5 meters.

 To use the USB Console Port, you must first download a USB driver to the PC. See the Note at the top of this page for more information.
2. Turn on the terminal or PC's power and, if using a PC, start the PC terminal program.

3. Press [Enter] two or three times and you will see the copyright page and the message “Press any key to continue”. Press a key, and you will then see the switch console command (CLI) prompt, for example:

 HP-2530-24G-PoEP#

If you want to continue with console management of the switch at this time, see chapter 3, “Getting Started With Switch Configuration” for some basic configuration steps. For more detailed information, refer to the Management and Configuration Guide, which is on the HP Web site at www.hp.com/networking/support.
Sample Network Topologies

This section shows a few sample network topologies for implementing the Switches. For more topology information, see the HP networking products Web site, www.hp.com/networking.

As a Desktop Switch Implementing PoE

Figure 2-10. Basic desktop configuration

The 2530-24G-PoE+-2SFP+, 2530-48G-PoE+-2SFP+ switches are designed to be used as desktop switches to which end nodes, printers and other peripherals, and servers are directly connected, as shown in the above illustration. The switches can also supply PoE+ power to end devices such as IP telephones.
As shown in the above illustration, the IP telephones can be connected in line, that is, between the switch and the end device, in this case a PC. The IP telephones have two ports, one in and one out. Therefore the phone receives voice and power from the switch and the PC can send and receive data through the phone to the switch.

The end node devices are connected to the switch by straight-through or crossover twisted-pair cables. Either cable type can be used because of the Auto-MDIX feature on these Switches.

As a Segment Switch Implementing PoE

These Switches also work well as segment switches. That is, with their high performance, they can be used for interconnecting network segments—simply connect the network devices that form those segments to the Switches.

In the illustration above, 2530-24G-PoE+-2SFP+ Switches with PCs, printers, and local servers attached, are both connected to a non-PoE switch. The devices attached to the two 2530-24G-PoE+-2SFP+ Switches can now...
communicate with each other through the non-PoE switch. They can also all communicate with the server that is connected to a 1000BASE-T port on the 2530-24G-2SFP+ Switch.

As shown in the illustration above, the IP telephones have been inserted in between the 2530-24G-PoE+-SFP+ Switch and the PCs, and wireless access points (WAPs) have been connected to the 2530-24G-PoE+-2SFP+ Switches. Both the telephones and WAPs will receive PoE+ power from each of the switches. Only devices directly connected to PoE switches can receive PoE power. Devices connected to the non-PoE switch cannot receive PoE power.

Because these Switches have the Auto-MDIX feature, the connections between the switches and end nodes or servers can be through category 5 straight-through or crossover twisted-pair cable. Category 3 or 4 cable can also be used if the connection is 10 Mbps only. In all cases, the device ports must be configured to auto negotiate the link characteristics for this feature to work.

The connections between the switches are through fiber-optic cabling connected to Gigabit transceivers. All the devices on these network segments can access other network resources that are connected elsewhere on the network. Always remember when connecting fiber-optics that all components match in specification.
Stacking the Switch

These Switches can be connected together, through standard network connections, and managed through a single IP address. Up to 16 switches can be connected together in such a “virtual stack”.

You identify this Switch as the “Commander” and give that switch an IP address. Up to 15 other switches in the network can then easily be configured as Members of the stack and managed through the Commander’s IP address. The management includes Telnet access and Web browser interface access to the Commander and to each Member switch through the Commander.

For more information on stacking your switch, see the Management and Configuration Guide, which is on the HP Web site at www.hp.com/networking/support.
Configuring the Switch

This chapter is a guide for using the console Switch Setup screen to quickly assign an IP (Internet Protocol) address and subnet mask to the switch, set a Manager password, and, optionally, configure other basic features.

For more information on using the switch console and the Web browser interface, please see the Management and Configuration Guide, which is on the HP Web site at www.hp.com/networking/support.

Recommended Minimal Configuration

In the factory default configuration, the switch has no IP (Internet Protocol) address and subnet mask, and no passwords. In this state, it can be managed only through a direct console connection. To manage the switch through in-band (networked) access, you should configure the switch with an IP address and subnet mask compatible with your network. Also, you should configure a Manager password to control access privileges from the console and Web browser interface. Other parameters in the Switch Setup screen can be left at their default settings or you can configure them with values you enter.

Many other features can be configured through the switch’s console interface, to optimize the switch’s performance, to enhance your control of the network traffic, and to improve network security. Once an IP address has been configured on the switch, these features can be accessed more conveniently through a remote Telnet session, through the switch’s Web browser interface, and from an SNMP network management station running a network management program. For a listing of switch features available with and without an IP address, refer to “How IP Addressing Affects Switch Operation” in the Management and Configuration Guide.

For more information on IP addressing, refer to “IP Configuration” in the Management and Configuration Guide.

Note

By default, the switch is configured to acquire an IP address configuration from a DHCP or Bootp server. To use DHCP/Bootp instead of the manual method described in this chapter, see “DHCP/Bootp Operation” in the Management and Configuration Guide.
Configuring the Switch
Recommended Minimal Configuration

Using the Console Setup Screen
The quickest and easiest way to minimally configure the switch for management and password protection in your network is to use a direct console connection to the switch, start a console session, and access the Switch Setup screen.

1. Using the method described in chapter 2, connect a terminal device to the switch and display the switch console command line interface (CLI) prompt (the default display).
 The CLI prompt appears, for example:
 **HP-2530-24G-PoEP#

2. At the prompt, enter the **setup** command to display the Switch Setup screen. The following illustration shows the Setup screen with the default settings.

 ![Figure 3-1. Example console setup screen](image)

 Figure 3-1. Example console setup screen

3. Use the **[Tab]** key to select the **Manager Password** field and enter a manager password of up to 16 printable ASCII characters.

4. **[Tab]** to the **IP Config (DHCP/Bootp)** field and use the Space bar to select the **Manual** option.

5. **[Tab]** to the **IP Address** field and enter the IP address that is compatible with your network.

6. **[Tab]** to the **Subnet Mask** field and enter the subnet mask used for your network.

7. Press **[Enter]**, then **[S]** (for **Save**).
Configuring the Switch

Recommended Minimal Configuration

Here is some information on the fields in the Setup screen. For more information on these fields, see the *Management and Configuration Guide*:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name</td>
<td>blank Optional; up to 25 characters, including spaces</td>
</tr>
<tr>
<td>System Contact</td>
<td>blank Optional; up to 48 characters, including spaces</td>
</tr>
<tr>
<td>Manager Password</td>
<td>blank Recommended; up to 16 characters (no blank spaces)</td>
</tr>
<tr>
<td>Logon Default</td>
<td>CLI The default setting selects the command line interface for console access. The alternative is the menu interface.</td>
</tr>
<tr>
<td>Time Zone</td>
<td>0 (none) Optional; 1440 to -1440. The number of minutes your location is to the West (-) or East (+) of GMT.</td>
</tr>
<tr>
<td>Community Name</td>
<td>public Default setting recommended.</td>
</tr>
<tr>
<td>Spanning Tree Enabled</td>
<td>No Default setting recommended unless STP is already running on your network or the switch will be used in complex network topologies.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>blank Optional; Enter the IP address of the next-hop gateway node if network traffic needs to be able to reach off-subnet destinations.</td>
</tr>
<tr>
<td>Time Sync Method</td>
<td>None Optional; The protocol the switch uses to acquire a time signal. The options are SNTP and TimeP.</td>
</tr>
<tr>
<td>TimeP Mode</td>
<td>Disabled Optional; The method the switch uses to acquire the TimeP server address.</td>
</tr>
<tr>
<td>IP Config (DHCP/Bootp)</td>
<td>DHCP/Bootp Set to Manual unless a DHCP/Bootp server is used on your network to configure IP addressing.</td>
</tr>
<tr>
<td>IP Address</td>
<td>xxx.xxx.xxx.xxx Recommended; If you set IP Config to Manual, then enter an IP address compatible with your network.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>xxx.xxx.xxx.xxx Recommended; If you entered an IP address, then enter a subnet mask compatible with your network.</td>
</tr>
</tbody>
</table>

Note: The IP address and subnet mask assigned for the switch must be compatible with the IP addressing used in your network. For more information on IP addressing, see the *Management and Configuration Guide*.

Where to Go From Here

The above procedure configures your switch with a Manager password, IP address, and subnet mask. As a result, with the proper network connections, you can now manage the switch from a PC equipped with Telnet, and/or a Web browser interface.

Some basic information on managing your switch is included in the next section. For more information on the console, Web browser, and SNMP management interfaces and all the features that can be configured on these Switches, see the *Management and Configuration Guide*.

3-3
Configuring the Switch
Recommended Minimal Configuration

To Recover from a Lost Manager Password: If you cannot start a console session at the manager level because of a lost Manager password, you can clear all passwords and user names by getting physical access to the switch and pressing and holding the Clear button for a full second.
Using the IP Address for Remote Switch Management

With your switch, you can use the switch’s IP address to manage the switch from any PC that is on the same subnet as the switch. You can use either a Telnet session or a standard Web browser to manage the switch.

Starting a Telnet Session

To access the switch through a Telnet session, follow these steps:

1. Make sure the switch is configured with an IP address and that the switch is reachable from the PC that is running the Telnet session (for example, by using a Ping command to the switch’s IP address).
2. Start the Telnet program on a PC that is on the same subnet as the switch and connect to the switch’s IP address.
3. You will see the copyright page and the message “Press any key to continue”. Press a key, and you will then see the switch console command (CLI) prompt, for example:

 HP-2530-24G-PoEP#

 Enter help or ? to see a list of commands that can be executed at the prompt. Entering any command followed by help provides more detailed context help information about the command. Entering any command followed by ? displays a list of options that are available at that point in the command entry.

Starting a Web Browser Session

These Switches can be managed through a graphical interface that you can access from any PC or workstation on the network by running your Web browser and typing in the switch’s IP address as the URL. No additional software installation is required to make this interface available; it is included in the switch’s onboard software.

For more information on using the Web browser interface, please see the Management and Configuration Guide.

An extensive help system is also available for the Web browser interface. To access the Help system, access to the Internet is required. Otherwise, the Help files must be downloaded to a local management server.
Configuring the Switch
Using the IP Address for Remote Switch Management
Troubleshooting

This chapter describes how to troubleshoot the Switches. This document describes troubleshooting mostly from a hardware perspective. You can perform more in-depth troubleshooting on these devices using the software tools available with the switches, including the full-featured console interface, the built-in Web browser interface, and HP PCM, the SNMP-based HP network management tool. For more information, see the chapter “Troubleshooting” in the Management and Configuration Guide, which is on the HP Web site at www.hp.com/networking/support.

This chapter describes the following:

■ basic troubleshooting tips (page 4-1)
■ diagnosing with the LEDs (page 4-4)
■ proactive networking tools (page 4-9)
■ hardware diagnostic tests (page 4-10)
■ restoring the factory default configuration (page 4-12)
■ downloading new software to the Switches (page 4-13)
■ HP Customer Support Services (page 4-13)

Basic Troubleshooting Tips

Most problems are caused by the following situations. Check for these items first when starting your troubleshooting:

■ Connecting to devices that have a fixed full-duplex configuration. The RJ-45 ports are configured as “Auto”. That is, when connecting to attached devices, the switch operates in one of two ways to determine the link speed and the communication mode (half duplex or full duplex):
 • If the connected device is also configured to Auto, the switch will automatically negotiate both link speed and communication mode.
 • If the connected device has a fixed configuration, for example 100 Mbps, at half or full duplex, the switch will automatically sense the link speed, but will default to a communication mode of half duplex.
Troubleshooting
Basic Troubleshooting Tips

Caution

Because the Switches behave in this way (in compliance with the IEEE 802.3 standard), if a device connected to the switch has a fixed configuration at full duplex, the device will not connect correctly to the switch. The result will be high error rates and very inefficient communications between the switch and the device.

Ensure all devices connected to these Switches are configured to auto negotiate, or are configured to connect at half duplex (all hubs are configured this way, for example).

- **Faulty or loose cables.** Look for loose or obviously faulty connections. If the cables appear to be OK, make sure the connections are snug. If that does not correct the problem, try a different cable.

- **Non-standard cables.** Non-standard and miswired cables may cause network collisions and other network problems, and can seriously impair network performance. Use a new correctly-wired cable or compare your cable to the cable in appendix A, “Cabling and Technology Information Specifications” for pinouts and correct cable wiring. A category 5 cable tester is a recommended tool for every 100BASE-TX and 1000BASE-T network installation.

- **Improper Network Topologies.** It is important to make sure you have a valid network topology. Common topology faults include excessive cable length and excessive repeater delays between end nodes. If you have network problems after recent changes to the network, change back to the previous topology. If you no longer experience the problems, the new topology is probably at fault. Sample topologies are shown at the end of chapter 2 in this book.

In addition, you should make sure that your network topology contains **no data path loops.** Between any two end nodes, there should be only one active cabling path at any time. Data path loops will cause broadcast storms that will severely impact your network performance.

For your Switch, if you wish to build redundant paths between important nodes in your network to provide some fault tolerance, you should enable **Spanning Tree Protocol** support on the switch. This ensures that only one of the redundant paths is active at any time, thus avoiding data path loops. Spanning Tree can be enabled through the switch console or the Web browser interface.

The se Switches also support **Trunking**, which allows multiple network cables to be used for a single network connection without causing a data path loop. For more information on Spanning Tree and Trunking, see the *Management and Configuration Guide*, which is on the HP Web site at www.hp.com/networking/support.
Troubleshooting
Basic Troubleshooting Tips

■ Check the port configuration. A port on your switch may not be operating as you expect because it has been put into a “blocking” state by Spanning Tree, GVRP (automatic VLANs), or LACP (automatic trunking). (Note that the normal operation of the Spanning Tree, GVRP, and LACP features may put the port in a blocking state.) Or, the port just may have been configured as disabled through software.

Use the switch console to determine the port’s configuration and verify that there is not an improper or undesired configuration of any of the switch features that may be affecting the port. For more information, see the *Management and Configuration Guide.*
Troubleshooting
Diagnosing with the LEDs

Diagnosing with the LEDs

Table 4-1 shows LED patterns on the switch that indicate problem conditions for general switch operation troubleshooting.

Table 4-2 shows LED patterns that indicate problem conditions for PoE troubleshooting.

LED patterns for General Switch Troubleshooting

1. Check in the table for the LED pattern you see on your switch.
2. Refer to the corresponding diagnostic tip on the next few pages.

Table 4-1. LED Error Indicators

<table>
<thead>
<tr>
<th>LED Pattern Indicating Problems</th>
<th>Diagnostic Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Off with power cord plugged in</td>
<td>1</td>
</tr>
<tr>
<td>On Prolonged On</td>
<td>2</td>
</tr>
<tr>
<td>On Flashing 2</td>
<td>3</td>
</tr>
<tr>
<td>On Flashing 2 Off</td>
<td>4</td>
</tr>
<tr>
<td>On Flashing 2 Flashing 2</td>
<td>5</td>
</tr>
<tr>
<td>On Off</td>
<td>6</td>
</tr>
<tr>
<td>On Off</td>
<td>7</td>
</tr>
<tr>
<td>Port Link LED</td>
<td>Off with cable connected, Off, but the port is not communicating</td>
</tr>
</tbody>
</table>

1 This LED is not important for the diagnosis.
2 The flashing behavior is an on/off cycle once every 1.6 seconds, approximately.
Diagnostic Tips:

<table>
<thead>
<tr>
<th>Tip</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| 1 | The switch is not plugged into an active AC power source, or the switch’s power supply may have failed. | 1. Verify the power cord is plugged into an active power source and to the switch. Make sure these connections are snug.
2. Try power cycling the switch by unplugging and plugging the power cord back in.
3. If the Power LED is still not on, verify the AC power source works by plugging another device into the outlet. Or try plugging the switch into a different outlet or try a different power cord.
If the power source and power cord are OK and this condition persists, the switch power supply may have failed. Call your HP-authorized network reseller, or use the electronic support services from HP to get assistance. |
| 2 | A switch hardware failure has occurred. All the LEDs will stay on indefinitely. | Try power cycling the switch. If the fault indication reoccurs, the switch may have failed. Call your HP-authorized network reseller, or use the electronic support services from HP to get assistance. |
| 3 | The switch has experienced a software failure during self test. | 1. Try resetting the switch by pressing the Reset button on the front of the switch, or by power cycling the switch.
2. If the fault indication reoccurs, attach a console to the switch (as indicated in chapter 2) and configure it to operate at 9600 baud. Then, reset the switch. Messages should appear on the console screen and in the console log identifying the error condition. You can view the console log at that point by selecting it from the console Main Menu or by typing “Show log” at the Manager command prompt (#).
If necessary to resolve the problem, contact your HP-authorized network reseller, or use the electronic support services from HP to get assistance. |
| 4 | One of the switch cooling fans may have failed. | Try disconnecting power from the switch and wait a few moments. Then reconnect the power to the switch and check the LEDs again. If the error indication reoccurs, one of the fans has failed. In switches with multiple fans the switch may continue to operate under this condition if the ambient temperature does not exceed normal room temperature, but for best operation, the switch should be replaced. Contact your HP-authorized network reseller, or use the electronic support services from HP to get assistance. |
| 5 | The network port for which the LED is flashing has experienced a self test or initialization failure. | Try power cycling the switch. If the fault indication reoccurs, the switch port may have failed. Call your HP-authorized network reseller, or use the electronic support services from HP to get assistance.
If the port is an SFP, verify that it is one of the SFPs supported by the switch. Unsupported SFPs will be identified with this fault condition. The supported SFPs are listed in Chapter 1, “Introducing the Switch” on page 1-3. The SFPs are also tested when they are “hot-swapped” — installed or changed while the switch is powered on.
To verify the port has failed, remove and reinstall the SFP without powering off the switch. If the port fault indication reoccurs, you will have to replace the SFP. Check the event log to see why the SFP failed. |

continued on the next page
<table>
<thead>
<tr>
<th>Tip</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>❗️</td>
<td>The network connection is not working properly.</td>
<td>Try the following procedures:</td>
</tr>
<tr>
<td></td>
<td>• For the indicated port, verify that both ends of the cabling, at the switch and the connected device, are connected properly.</td>
<td>• Verify the connected device and switch are both powered on and operating correctly.</td>
</tr>
<tr>
<td></td>
<td>• For twisted-pair connections to the fixed 10/100/1000 ports, if the port is configured to “Auto” (auto negotiate), either straight-through or crossover cables can be used because of the switch’s “Auto-MDIX” feature and the Auto MDI/MDI-X feature of the 10/100/1000-T port.</td>
<td>• Verify you have used the correct cable type for the connection:</td>
</tr>
<tr>
<td></td>
<td>– For twisted-pair connections to the fixed 10/100/1000 ports, if the port is configured to “Auto” (auto negotiate), either straight-through or crossover cables can be used because of the switch’s “Auto-MDIX” feature and the Auto MDI/MDI-X feature of the 10/100/1000-T port.</td>
<td>– For twisted-pair connections to the fixed 10/100/1000 ports, if the port is configured to “Auto” (auto negotiate), either straight-through or crossover cables can be used because of the switch’s “Auto-MDIX” feature and the Auto MDI/MDI-X feature of the 10/100/1000-T port.</td>
</tr>
<tr>
<td></td>
<td>– For 1000BASE-T connections, verify the network cabling complies with the IEEE 802.3ab standard. The cable should be installed according to the ANSI/TIA/EIA-568-A-5 specifications. Cable testing should comply with the stated limitations for Attenuation, Near-End Crosstalk, Far-End Crosstalk, Equal-Level Far-End Crosstalk (ELFEXT), Multiple Disturber ELFEXT, and Return Loss. The cable verification process must include all patch cables from any end devices, including the switch, to any patch panels in the cabling path.</td>
<td>– For 1000BASE-T connections, verify the network cabling complies with the IEEE 802.3ab standard. The cable should be installed according to the ANSI/TIA/EIA-568-A-5 specifications. Cable testing should comply with the stated limitations for Attenuation, Near-End Crosstalk, Far-End Crosstalk, Equal-Level Far-End Crosstalk (ELFEXT), Multiple Disturber ELFEXT, and Return Loss. The cable verification process must include all patch cables from any end devices, including the switch, to any patch panels in the cabling path.</td>
</tr>
<tr>
<td></td>
<td>• Verify the port has not been disabled through a switch configuration change. You can use the console interface, or, if you have configured an IP address on the switch, use the Web browser interface to determine the state of the port and re-enable the port if necessary.</td>
<td>• Verify the port has not been disabled through a switch configuration change. You can use the console interface, or, if you have configured an IP address on the switch, use the Web browser interface to determine the state of the port and re-enable the port if necessary.</td>
</tr>
<tr>
<td></td>
<td>• Verify the switch port configuration matches the configuration of the attached device. For example, if the switch port is configured as “Auto”, the port on the attached device also MUST be configured as “Auto”. Depending on the port type, twisted-pair or fiber-optic, if the configurations don’t match, the results could be a very unreliable connection, or no link at all.</td>
<td>• Verify the switch port configuration matches the configuration of the attached device. For example, if the switch port is configured as “Auto”, the port on the attached device also MUST be configured as “Auto”. Depending on the port type, twisted-pair or fiber-optic, if the configurations don’t match, the results could be a very unreliable connection, or no link at all.</td>
</tr>
<tr>
<td></td>
<td>• If the other procedures don’t resolve the problem, try using a different port or a different cable.</td>
<td></td>
</tr>
</tbody>
</table>

Note: If the switch port configuration is changed to one of the **fixed configuration options** (for example, 100 Mbps/Full Duplex), then the port operates as **MDI-X only** and you must use the correct type of cable for the connection. In general, for connecting an end node (MDI port) to the switch, use straight-through cable; for connecting to MDI-X ports on hubs, other switches, and routers, use crossover cable.
The port may be improperly configured, or the port may be in a “blocking” state by the normal operation of the Spanning Tree, LACP, or IGMP features.

<table>
<thead>
<tr>
<th>Tip</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚫</td>
<td>The port may be improperly configured, or the port may be in a “blocking” state by the normal operation of the Spanning Tree, LACP, or IGMP features.</td>
<td>Use the switch console to see if the port is part of a dynamic trunk (through the LACP feature) or to see if Spanning Tree is enabled on the switch, and to see if the port may have been put into a “blocking” state by those features. The <code>show lacp</code> command displays the port status for the LACP feature; the <code>show spanning-tree</code> command displays the port status for Spanning Tree. Also check the Port Status screen using the <code>show interfaces</code> command to see if the port has been configured as “disabled”. Other switch features that may affect the port operation include VLANs and IGMP. Use the switch console to see how the port is configured for these features. For software troubleshooting tips, see the chapter “Troubleshooting” in the Management and Configuration Guide, which is on the HP Web site at www.hp.com/networking/support. Ensure also, that the device at the other end of the connection is indicating a good link to the switch. If it is not, the problem may be with the cabling between the devices or the connectors on the cable.</td>
</tr>
</tbody>
</table>
LED Patterns for PoE Troubleshooting

If the PoE Status LED is flashing, that indicates a problem with the delivery of PoE power out one or more switch ports. Press the LED Mode button to put the switch into PoE mode and the port LEDs will show which ports are experiencing the problem. The following tables identify the specific problems that are shown by the LEDs.

1. Check in the table for the LED pattern you see on your switch.
2. Refer to the corresponding diagnostic tip.

Table 4-2. LED Error Indicators

<table>
<thead>
<tr>
<th>LED Pattern Indicating Problems</th>
<th>Diagnostic Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Fast Flash Orange Slow Flash</td>
<td>1</td>
</tr>
<tr>
<td>Off Slow Flash Orange Slow Flash</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic Tips:

<table>
<thead>
<tr>
<th>Tip</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PoE oversubscription condition. All available PoE power is already taken by higher-priority ports.</td>
<td>If possible add additional PoE power, or redefine port priorities.</td>
</tr>
<tr>
<td>2</td>
<td>PoE hardware fault. A switch hardware component that is involved with PoE power delivery has failed.</td>
<td>The switch must be replaced.</td>
</tr>
</tbody>
</table>
Proactive Networking

These Switches have built-in management capabilities that proactively help you manage your network including:

- finding and helping you fix the most common network error conditions (for example, faulty network cabling, and non-standard network topologies)
- informing you of the problem with clear, easy-to-understand messages
- recommending network configuration changes to enhance the performance of your network

The following interfaces provide tests, indicators, and an event log that can be used to monitor the switch and its network connections and to help you take advantage of these proactive networking features:

- A graphical Web browser interface you can use to manage your switch from a PC running a supported Web browser, for example Microsoft Internet Explorer, and Netscape Communicator.
- A full-featured easy-to-use console interface you can access by connecting a standard terminal or PC running a terminal emulator to the switch’s console port. The cable to make that connection is provided with your switch. The console interface is also accessible through a Telnet connection.

For more information on using these software tools to diagnose and manage your switch, see the “Troubleshooting” chapter in the Management and Configuration Guide, which is on the HP Web site at www.hp.com/networking/support.
Hardware Diagnostic Tests

Testing the Switch by Resetting It

If you believe the switch is not operating correctly, you can reset the switch to test its circuitry and operating code. To reset a switch, either:

- unplug and plug in the power cord (power cycling)
- press the Reset button on the front of the switch

Power cycling the switch and pressing the Reset button both cause the switch to perform its power-on self test. These reset processes also cause any network traffic counters to be reset to zero, and cause the System Up Time timer to reset to zero.

Checking the Switch LEDs

The self test passes if the Fault and Self Test LEDs on the front of the switch go off after approximately 50 seconds. If these LEDs stay on longer than 60 seconds or begin flashing, there may be a problem with the switch.

See “Diagnosing with the LEDs” on page 4-4 for information on interpreting the LED patterns.

Checking Console Messages

Useful diagnostic messages may be displayed on the console screen when the switch is reset. As described in chapter 2 under step 7, connect a PC running a VT-100 terminal emulator program or a standard VT-100 terminal to the switch's Console Port and configure it to run at 9600 baud, and with the other terminal communication settings shown on “Configuring the Switch”. Then, when you reset the switch, note the messages that are displayed. Additionally, you can check the switch event log, which can be accessed from the console using the show log command, or from the console Main Menu after entering the Menu command.
Testing Twisted-Pair Cabling

Network cables that fail to provide a link or provide an unreliable link between the switch and the connected network device may not be compatible with the IEEE 802.3 Type 10BASE-T, 100BASE-TX, or 1000BASE-T standards. The twisted-pair cables attached to the switch must be compatible with the appropriate standards. To verify your cable is compatible with these standards, use a qualified cable test device.

Testing Switch-to-Device Network Communications

You can perform the following communication tests to verify the network is operating correctly between the switch and any connected device that can respond correctly to the communication test.

- **Link Test**—a physical layer test that sends IEEE 802.2 test packets to any device identified by its MAC address
- **Ping Test**—a network layer test used on IP networks that sends test packets to any device identified by its IP address

These tests can be performed through the switch console interface from a terminal connected to the switch or through a Telnet connection, or from the switch's Web browser interface. For more information, see the Management and Configuration Guide, which is on the HP Web site at www.hp.com/networking/support.

Testing End-to-End Network Communications

Both the switch and the cabling can be tested by running an end-to-end communications test—a test that sends known data from one network device to another through the switch. For example, if you have two PCs on the network that have LAN adapters between which you can run a link-level test or Ping test through the switch, you can use this test to verify that the entire communication path between the two PCs is functioning correctly. See your LAN adapter documentation for more information on running a link test or Ping test.
Restoring the Factory Default Configuration

As part of your troubleshooting process on the Switch, it may become necessary to return the switch configuration to the factory default settings. This clears any passwords, clears the console event log, resets the network counters to zero, performs a complete self test, and reboots the switch into its factory default configuration including deleting the IP address, if one is configured.

Note

This process removes all switch configuration changes that you have made from the factory default settings. This includes, for example, configuration of VLANs, Spanning Tree, trunks, and stacking. Returning the configuration of these features to their factory default settings (usually disabling them) may result in network connectivity issues.

If the switch has a valid configuration, and you are restoring the factory default settings for a reason other than configuration problems, you should save the switch configuration prior to performing the factory default reset. Then, after the reset and resolution of the original problem, you can restore the saved configuration to the switch. For both the save and restore processes, you can use the console `copy` command. For more information on this command, see the Management and Configuration Guide, which is on the HP Web site at www.hp.com/networking/support.

You can restore the factory default configuration either on the switch itself, or through the switch console.

To execute the factory default reset on the switch, perform these steps:

1. Using pointed objects, simultaneously press both the Reset and Clear buttons on the front of the switch. The power and fault lights come on.
2. Continue to press the Clear button while releasing the Reset button.
3. When the Self Test LED begins to flash, release the Clear button.

The switch will then complete its self test and begin operating with its configuration restored to the factory default settings.

To restore the factory default configuration using the console, execute the `erase startup-config` command from the console command prompt.
Troubleshooting

Downloading New Switch Software

When product enhancements occur for the Switches, new software can be downloaded to the switch through several methods, for product enhancements and new features. For more information, see the *Management and Configuration Guide*.

The new switch software would be available on the HP Web site, www.hp.com/networking/support.

HP Customer Support Services

If you are still having trouble with your switch, Hewlett-Packard offers support 24 hours a day, seven days a week through the use of a number of automated electronic services. The HP Web site, www.hp.com/networking/support also provides up-to-date support information.

Additionally, your HP-authorized network reseller can provide you with assistance, both with services that they offer and with services offered by HP.

Before Calling Support

Before calling your networking dealer or HP Support, to make the support process most efficient, you first should retrieve the following information:

<table>
<thead>
<tr>
<th>Information Item</th>
<th>Information Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>• product identification, including SFPs</td>
<td>the front of the switch and on labels on the SFPs</td>
</tr>
<tr>
<td>• details about the switch’s status including the software (OS) version, a copy of the switch configuration, a copy of the switch Event Log, and a copy of the switch status and counters information</td>
<td>switch console: <code>show tech</code> command</td>
</tr>
<tr>
<td>• copy of your network topology map, including network addresses assigned to the relevant devices</td>
<td>your network records</td>
</tr>
</tbody>
</table>
Troubleshooting
HP Customer Support Services
Specifications

Switch Specifications

Physical

<table>
<thead>
<tr>
<th>Model</th>
<th>Width</th>
<th>Depth</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530-24G-2SFP+ (J9856A)</td>
<td>44.3 cm</td>
<td>24.61 cm</td>
<td>4.4 cm</td>
<td>2.81 kg</td>
</tr>
<tr>
<td></td>
<td>(17.4 in)</td>
<td>(9.7 in)</td>
<td>(1.73 in)</td>
<td>(6.2 lbs)</td>
</tr>
<tr>
<td>2530-48G-2SFP+ (J9855A)</td>
<td>44.3 cm</td>
<td>24.61 cm</td>
<td>4.4 cm</td>
<td>3.22 kg</td>
</tr>
<tr>
<td></td>
<td>(17.4 in)</td>
<td>(9.7 in)</td>
<td>(1.73 in)</td>
<td>(7.1 lbs)</td>
</tr>
<tr>
<td>2530-24G-PoE+-2SFP+ (J9854A)</td>
<td>44.3 cm</td>
<td>32.26 cm</td>
<td>4.4 cm</td>
<td>3.90 kg</td>
</tr>
<tr>
<td></td>
<td>(17.4 in)</td>
<td>(12.7 in)</td>
<td>(1.73 in)</td>
<td>(8.6 lbs)</td>
</tr>
<tr>
<td>2530-48G-PoE+-2SFP+ (J9853A)</td>
<td>44.3 cm</td>
<td>32.26 cm</td>
<td>4.4 cm</td>
<td>4.71 kg</td>
</tr>
<tr>
<td></td>
<td>(17.4 in)</td>
<td>(12.7 in)</td>
<td>(1.73 in)</td>
<td>(10.4 lbs)</td>
</tr>
</tbody>
</table>

Electrical

<table>
<thead>
<tr>
<th>Model</th>
<th>AC voltage</th>
<th>Maximum current</th>
<th>Frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530-24G-2SFP+ (J9856A)</td>
<td>100–127 volts 200–240 volts</td>
<td>0.70 A 0.40 A</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>2530-48G-2SFP+ (J9855A)</td>
<td>100–127 volts 200–240 volts</td>
<td>0.80 A 0.50 A</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>2530-24G-PoE+-2SFP+ (J9854A)</td>
<td>100–127 volts 200–240 volts</td>
<td>2.90 A 1.40 A</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>2530-48G-PoE+-2SFP+ (J9853A)</td>
<td>100–127 volts 200–240 volts</td>
<td>5.5 A 2.7 A</td>
<td>50/60 Hz</td>
</tr>
</tbody>
</table>

1The switch automatically adjusts to any voltage between 100-127 or 200-240 volts and either 50 or 60 Hz.
Specifications
Switch Specifications

Environmental

<table>
<thead>
<tr>
<th></th>
<th>Operating</th>
<th>Non-Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0°C to 45°C (32°F to 113°F)</td>
<td>-40°C to 70°C (-40°F to 158°F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>15% to 95% at 40°C (104°F)</td>
<td>15% to 90% at 65°C (149°F)</td>
</tr>
<tr>
<td>Maximum altitude</td>
<td>3.0 Km (10,000 ft)*</td>
<td>4.6 Km (15,000 ft)</td>
</tr>
</tbody>
</table>

* The operating maximum altitude should not exceed that of any accessory being connected to any Switch.

Acoustics

Noise Emission

<table>
<thead>
<tr>
<th>Model</th>
<th>Geraeuschemission LpA</th>
<th>Noise Emission LpA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530-24G-2SFP+ (J9856A)</td>
<td>29.4 dB am fiktiven Arbeitsplatz nach DIN 45635 T.19</td>
<td>29.4 dB at virtual workspace according to DIN 45635 T.19</td>
</tr>
<tr>
<td>2530-48G-2SFP+ (J9855A)</td>
<td>32.2 dB am fiktiven Arbeitsplatz nach DIN 45635 T.19</td>
<td>32.2 dB at virtual workspace according to DIN 45635 T.19</td>
</tr>
<tr>
<td>2530-24G-PoE+-2SFP+ (J9854A)</td>
<td>31.3 dB am fiktiven Arbeitsplatz nach DIN 45635 T.19</td>
<td>31.3 dB at virtual workspace according to DIN 45635 T.19</td>
</tr>
<tr>
<td>2530-48G-PoE+-2SFP+ (J9853A)</td>
<td>36.4 dB am fiktiven Arbeitsplatz nach DIN 45635 T.19</td>
<td>36.4 dB at virtual workspace according to DIN 45635 T.19</td>
</tr>
</tbody>
</table>

Safety

Complies with:
- CSA2.2 No. 60950-1-07 2nd; UL60950-1 2nd
- EN 60825-1:2007 / IEC 60825-1:2007 Class 1
Standards

Table A-1. Technology Standards and Safety Compliance

<table>
<thead>
<tr>
<th>Technology</th>
<th>Compatible with these IEEE standards</th>
<th>Laser safety information</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-T</td>
<td>IEEE 802.3 10BASE-T</td>
<td></td>
</tr>
<tr>
<td>100-TX</td>
<td>IEEE 802.3u 100BASE-TX</td>
<td></td>
</tr>
<tr>
<td>1000-T</td>
<td>IEEE 802.3ab 1000BASE-T</td>
<td></td>
</tr>
<tr>
<td>1000-SX</td>
<td>IEEE 802.3z 1000BASE-SX</td>
<td>EN/IEC 60825 Class 1 Laser Product Laser Klasse 1</td>
</tr>
<tr>
<td>1000-LX</td>
<td>IEEE 802.3z 1000BASE-LX</td>
<td>EN/IEC 60825 Class 1 Laser Product Laser Klasse 1</td>
</tr>
<tr>
<td>1000-LH</td>
<td>(not an IEEE standard)</td>
<td>EN/IEC 60825 Class 1 Laser Product Laser Klasse 1</td>
</tr>
<tr>
<td>1000-BX</td>
<td>IEEE 802.3ah 1000BASE-BX10</td>
<td>EN/IEC 60825 Class 1 Laser Product Laser Klasse 1</td>
</tr>
<tr>
<td>10-Gig Direct Attach</td>
<td>(not an IEEE standard)</td>
<td></td>
</tr>
<tr>
<td>10-Gig SR</td>
<td>IEEE 802.3ae 10GBASE-SR</td>
<td>EN/IEC 60825 Class 1 Laser Product Laser Klasse 1</td>
</tr>
<tr>
<td>10-Gig LRM</td>
<td>IEEE 802.3aq 10GBASE-LRM</td>
<td>EN/IEC 60825 Class 1 Laser Product Laser Klasse 1</td>
</tr>
<tr>
<td>10-Gig LR</td>
<td>IEEE 802.3ae 10GBASE-LR</td>
<td>EN/IEC 60825 Class 1 Laser Product Laser Klasse 1</td>
</tr>
<tr>
<td>10-Gig ER</td>
<td>IEEE 802.3ae 10GBASE-ER</td>
<td>EN/IEC 60825 Class 1 Laser Product Laser Klasse 1</td>
</tr>
</tbody>
</table>
Cabling and Technology Information Specifications

Table A-2. Cabling Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Operation</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twisted-pair copper</td>
<td>10 Mbps</td>
<td>Category 3, 4 or 5, 100-ohm unshielded twisted-pair (UTP) or shielded twisted-pair (STP) cable, complying with IEEE 802.3 10BASE-T specifications.</td>
</tr>
<tr>
<td></td>
<td>100 Mbps</td>
<td>Category 5, 100-ohm UTP or STP cable, complying with IEEE 802.3u 100BASE-TX specifications.</td>
</tr>
<tr>
<td></td>
<td>1000 Mbps</td>
<td>Category 5, 100-ohm 4-pair UTP or STP cable, complying with IEEE 802.3ab 1000BASE-T specifications—Category 5e or better is recommended. See note on 1000BASE-T Cable Requirements below.</td>
</tr>
<tr>
<td>Twinaxial copper</td>
<td>Direct attach cables</td>
<td>One-piece devices consisting of a cable with SFP+ connectors permanently attached to each end, complying with SFF 8431 SFP+ specifications.</td>
</tr>
<tr>
<td>Multimode fiber</td>
<td></td>
<td>62.5/125 μm or 50/125 μm (core/cladding) diameter, low metal content, graded index fiber-optic cables, complying with the ITU-T G.651 and ISO/IEC 793-2 Type A1b or A1a standards respectively.</td>
</tr>
<tr>
<td>Single mode fiber</td>
<td></td>
<td>9/125 μm (core/cladding) diameter, low metal content fiber-optic cables, complying with the ITU-T G.652 and ISO/IEC 793-2 Type B1 standards.</td>
</tr>
</tbody>
</table>

1 A mode conditioning patch cord may be needed for some Gigabit-LX installations. See “Mode Conditioning Patch Cord” on page A-7 for more information.

Note on 1000BASE-T Cable Requirements. The Category 5 networking cables that work for 100BASE-TX connections should also work for 1000BASE-T, as long as all four-pairs are connected. But, for the most robust connections, you should use cabling that complies with the Category 5e specifications, as described in Addendum 5 to the TIA-568-A standard (ANSI/TIA/EIA-568-A-5).

Because of the increased speed provided by 1000BASE-T (Gigabit-T), network cable quality is more important than for either 10BASE-T or 100BASE-TX. Cabling plants being used to carry 1000BASE-T networking must comply with the IEEE 802.3ab standards. In particular, the cabling must pass tests for Attenuation, Near-End Crosstalk (NEXT), and Far-End Crosstalk (FEXT). Additionally, unlike the cables for 100BASE-TX, the 1000BASE-T cables must pass tests for Equal-LevelFar-End Crosstalk (ELFEXT) and Return Loss.
When testing your cabling, be sure to include the patch cables that connect the switch and other end devices to the patch panels on your site. The patch cables are frequently overlooked when testing cable and they must also comply with the cabling standards.
Technology Distance Specifications

Table A-3. Technology Distance Specifications

<table>
<thead>
<tr>
<th>Technology</th>
<th>Supported cable type</th>
<th>Multimode fiber modal bandwidth</th>
<th>Supported distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-T</td>
<td>twisted-pair copper</td>
<td>N/A</td>
<td>up to 100 meters</td>
</tr>
<tr>
<td>1000-SX</td>
<td>multimode fiber</td>
<td>160 MHz*km</td>
<td>2 - 220 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 MHz*km</td>
<td>2 - 275 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 MHz*km</td>
<td>2 - 500 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 MHz*km</td>
<td>2 - 550 meters</td>
</tr>
<tr>
<td>1000-LX</td>
<td>multimode fiber</td>
<td>400 MHz*km</td>
<td>2 - 550 meters</td>
</tr>
<tr>
<td></td>
<td>single mode fiber</td>
<td>500 MHz*km</td>
<td>2 - 10,000 meters</td>
</tr>
<tr>
<td>1000-LH</td>
<td>single mode fiber</td>
<td>N/A</td>
<td>10 - 70,000 meters</td>
</tr>
<tr>
<td>1000-BX</td>
<td>single mode fiber</td>
<td>N/A</td>
<td>0.5 - 10,000 meters</td>
</tr>
<tr>
<td>10-Gig Direct Attach</td>
<td>twinaxial copper</td>
<td>N/A</td>
<td>(various lengths offered)</td>
</tr>
<tr>
<td>10-Gig SR</td>
<td>multimode fiber</td>
<td>160 MHz*km</td>
<td>2 - 26 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 MHz*km</td>
<td>2 - 33 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 MHz*km</td>
<td>2 - 66 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 MHz*km</td>
<td>2 - 82 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 MHz*km</td>
<td>2 - 300 meters</td>
</tr>
<tr>
<td>10-Gig LRM</td>
<td>multimode fiber</td>
<td>400 MHz*km</td>
<td>0.5 - 100 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 MHz*km</td>
<td>0.5 - 220 meters</td>
</tr>
<tr>
<td>10-Gig LR</td>
<td>single mode fiber</td>
<td>N/A</td>
<td>2 - 10,000 meters</td>
</tr>
<tr>
<td>10-Gig ER</td>
<td>single mode fiber</td>
<td>N/A</td>
<td>2 - 40,000 meters</td>
</tr>
</tbody>
</table>

1 For distances less than 20km, a 10dB attenuator must be used. For distances between 20km and 40km, a 5dB attenuator must be used. Attenuators can be purchased from most cable vendors.
Mode Conditioning Patch Cord

The following information applies to installations in which multimode fiber-optic cables are connected to a Gigabit-LX port. Multimode cable has a design characteristic called “Differential Mode Delay”, which requires the transmission signals be “conditioned” to compensate for the cable design and thus prevent resulting transmission errors.

Under certain circumstances, depending on the cable used and the lengths of the cable runs, an external Mode Conditioning Patch Cord may need to be installed between the Gigabit-LX transmitting device and the multimode network cable to provide the transmission conditioning. If you experience a high number of transmission errors on those ports, usually CRC or FCS errors, you may need to install one of these patch cords between the fiber-optic port in your switch and your multimode fiber-optic network cabling, at both ends of the network link.

The patch cord consists of a short length of single mode fiber cable coupled to graded-index multimode fiber cable on the transmit side, and only multimode cable on the receive side. The section of single mode fiber is connected in such a way that it minimizes the effects of the differential mode delay in the multimode cable.

Note

Most of the time, if you are using good quality graded-index multimode fiber cable that adheres to the standards listed in this appendix, there should not be a need to use mode conditioning patch cords in your network. This is especially true if the fiber runs in your network are relatively short.

Installing the Patch Cord

As shown in the illustration below, connect the patch cord to the transceiver with the section of single mode fiber plugged in to the Tx (transmit) port. Then, connect the other end of the patch cord to your network cabling patch panel, or directly to the network multimode fiber.

If you connect the patch cord directly to the network cabling, you may need to install a female-to-female adapter to allow the cables to be connected together.
Figure A-1. Example: Connecting a Mode Conditioning Patch Cord for Gigabit-LX

Make sure you purchase a patch cord that has appropriate connectors on each end, and has multimode fibers that match the characteristics of the multimode fiber in your network. Most important, the core diameter of the multimode patch cord must match the core diameter of the multimode cable infrastructure (either 50 or 62.5 microns).
Twisted-Pair Cable/Connector Pin-Outs

The Auto-MDIX Feature: In the default configuration, “Auto”, the fixed 10/100/1000BASE-T ports on the Switches all automatically detect the type of port on the connected device and operate as either an MDI or MDI-X port, whichever is appropriate. So for any connection, a straight-through twisted-pair cable can be used—you no longer have to use crossover cables, although crossover cables can also be used for any of the connections. (The 10/100/1000-T ports support the IEEE 802.3ab standard, which includes the “Auto-MDIX” feature.)

If you connect the Switch twisted-pair port to another switch or hub, which typically have MDI-X ports, the Switch port automatically operates as an MDI port. If you connect it to an end node, such as a server or PC, which typically have MDI ports, the Switch port operates as an MDI-X port. In all cases, you can use standard straight-through cables or crossover cables.

If you happen to use a correctly wired crossover cable, though, the switch will still be able to automatically detect the MDI/MDI-X operation and link correctly to the connected device.

Note

Using Fixed Configurations. If the port configuration is changed to any of the fixed configurations though, for example 100 Mbps/full duplex, the port operates as MDI-X only and the correct cable type must be used: for connections to MDI ports, such as end nodes, use a straight-through cable; for connections to MDI-X ports, such as on hubs and other switches, use a crossover cable.

Other Wiring Rules:

- All twisted-pair wires used for 10 Mbps, and 100 Mbps operation must be twisted through the entire length of the cable. The wiring sequence must conform to EIA/TIA 568-B (not USOC). See “Twisted-Pair Cable Pin Assignments” later in this appendix for a listing of the signals used on each pin.
- For 1000BASE-T connections, all four pairs of wires in the cable must be available for data transmission.
- For 10 Mbps connections to the ports, you can use Category 3, 4, or 5 unshielded twisted-pair cable, as supported by the IEEE 802.3 Type 10Base-T standard.
Specifications
Twisted-Pair Cable/Connector Pin-Outs

- For 100 Mbps connections to the ports, use 100-ohm Category 5 UTP or STP cable only, as supported by the IEEE 802.3u Type 100BASE-TX standard.
- For 1000 Mbps connections, 100-ohm Category 5e or better cabling is recommended.
- To provide Power over Ethernet to the access point, all 4 pairs must be connected for any network cable attached to this port; the cable must meet ISO/DIS 11801 Class D requirements and IEEE 802.3af requirements.
Straight-through Twisted-Pair Cable for 10 Mbps or 100 Mbps Network Connections

Because of the Auto-MDIX operation of the 10/100 ports on the switch, for all network connections, to PCs, servers or other end nodes, or to hubs or other switches, you can use straight-through cables.

If any of these ports are given a fixed configuration, for example 100 Mbps/Full Duplex, the ports operate as MDI-X ports, and straight-through cables must be then used for connections to PC NICs and other MDI ports.

Cable Diagram

Pins 1 and 2 on connector “A” must be wired as a twisted pair to pins 1 and 2 on connector “B”.
Pins 3 and 6 on connector “A” must be wired as a twisted pair to pins 3 and 6 on connector “B”.
Pins 4, 5, 7, and 8 are not used in this application, although they may be wired in the cable.

Pin Assignments

<table>
<thead>
<tr>
<th>Switch End (MDI-X)</th>
<th>Computer, Transceiver, or Other End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>Pins</td>
</tr>
<tr>
<td>receive +</td>
<td>1</td>
</tr>
<tr>
<td>receive -</td>
<td>2</td>
</tr>
<tr>
<td>transmit +</td>
<td>3</td>
</tr>
<tr>
<td>transmit -</td>
<td>6</td>
</tr>
</tbody>
</table>
Crossover Twisted-Pair Cable for 10 Mbps or 100 Mbps Network Connection

The Auto-MDIIX operation of the 10/100 ports on the switch also allows you to use crossover cables for all network connections, to PCs, servers or other end nodes, or to hubs or other switches.

If any of these ports are given a fixed configuration, for example 100 Mbps/Full Duplex, the ports operate as MDI-X ports, and crossover cables must be then used for connections to hubs or switches or other MDI-X network devices.

Cable Diagram

Note

Pins 1 and 2 on connector “A” must be wired as a twisted pair to pins 3 and 6 on connector “B”.

Pins 3 and 6 on connector “A” must be wired as a twisted pair to pins 1 and 2 on connector “B”.

Pins 4, 5, 7, and 8 are not used in this application, although they may be wired in the cable.

Pin Assignments

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pins</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>receive +</td>
<td>1</td>
<td>6</td>
<td>transmit -</td>
</tr>
<tr>
<td>receive -</td>
<td>2</td>
<td>3</td>
<td>transmit +</td>
</tr>
<tr>
<td>transmit +</td>
<td>3</td>
<td>2</td>
<td>receive -</td>
</tr>
<tr>
<td>transmit -</td>
<td>6</td>
<td>1</td>
<td>receive +</td>
</tr>
</tbody>
</table>
Straight-Through Twisted-Pair Cable for 1000 Mbps Network Connections

1000BASE-T connections require that all four pairs of wires be connected.

Cable Diagram

![Cable Diagram]

Note

Pins 1 and 2 on connector “A” must be wired as a twisted pair to pins 1 and 2 on connector “B”.
Pins 3 and 6 on connector “A” must be wired as a twisted pair to pins 3 and 6 on connector “B”.
Pins 4 and 5 on connector “A” must be wired as a twisted pair to pins 4 and 5 on connector “B”.
Pins 7 and 8 on connector “A” must be wired as a twisted pair to pins 7 and 8 on connector “B”.

Pin Assignments

For 1000BASE-T operation, all four pairs of wires are used for both transmit and receive.
Specifications
Twisted-Pair Cable/Connector Pin-Outs
Safety and EMC Regulatory Statements

Safety Information

Documentation reference symbol. If the product is marked with this symbol, refer to the product documentation to get more information about the product.

WARNING
A WARNING in the manual denotes a hazard that can cause injury or death.

Caution
A Caution in the manual denotes a hazard that can damage equipment.

Do not proceed beyond a WARNING or Caution notice until you have understood the hazardous conditions and have taken appropriate steps.

Grounding
These are safety class I products and have protective earthing terminals. There must be an uninterruptible safety earth ground from the main power source to the product’s input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, disconnect the power cord until the ground has been restored.

For LAN cable grounding:

- If your LAN covers an area served by more than one power distribution system, be sure their safety grounds are securely interconnected.
- LAN cables may occasionally be subject to hazardous transient voltages (such as lightning or disturbances in the electrical utilities power grid). Handle exposed metal components of the network with caution.

Servicing
There are no user-serviceable parts inside these products. Any servicing, adjustment, maintenance, or repair must be performed only by service-trained personnel.

These products do not have a power switch; they are powered on when the power cord is plugged in.
Informations concernant la sécurité

Symbole de référence à la documentation. Si le produit est marqué de ce symbole, reportez-vous à la documentation du produit afin d’obtenir des informations plus détaillées.

WARNING

Dans la documentation, un WARNING indique un danger susceptible d’entraîner des dommages corporels ou la mort.

Caution

Un texte de mise en garde intitulé Caution indique un danger susceptible de causer des dommages à l’équipement.

Ne continuez pas au-delà d’une rubrique WARNING ou Caution avant d’avoir bien compris les conditions présentant un danger et pris les mesures appropriées.

Cet appareil est un produit de classe I et possède une borne de mise à la terre. La source d’alimentation principale doit être munie d’une prise de terre de sécurité installée aux bornes du câblage d’entrée, sur le cordon d’alimentation ou le cordon de raccordement fourni avec le produit. Lorsque cette protection semble avoir été endommagée, débrancher le cordon d’alimentation jusqu’à ce que la mise à la terre ait été réparée.

Mise à la terre du câble de réseau local:

- si votre réseau local s’étend sur une zone desservie par plus d’un système de distribution de puissance, assurez-vous que les prises de terre de sécurité soient convenablement interconnectées.

- Les câbles de réseaux locaux peuvent occasionnellement être soumis à des surtensions transitoires dangereuses (telles que la foudre ou des perturbations dans le réseau d’alimentation public). Manipulez les composants métalliques du réseau avec précautions.

Aucune pièce contenue à l’intérieur de ce produit ne peut être réparée par l’utilisateur. Tout dépannage, réglage, entretien ou réparation devra être confié exclusivement à un personnel qualifié.

Cet appareil ne comporte pas de commutateur principal; la mise sous tension est effectuée par branchement du cordon d’alimentation.
Hinweise zur Sicherheit

Für LAN-Kabelerdung:

- Wenn Ihr LAN ein Gebiet umfaßt, das von mehr als einem Stromverteilungssystem beliefert wird, müssen Sie sich vergewissern, daß die Sicherheitserdungen fest untereinander verbunden sind.

Dieses Gerät hat keinen Netzschalter; es wird beim Anschließen des Netzkabels eingeschaltet.
Considerazioni sulla sicurezza

Questo prodotto è omologato nella classe di sicurezza I ed ha un terminale protettivo di collegamento a terra. Dev’essere installato un collegamento a terra di sicurezza, non interrompibile che vada dalla fonte d'alimentazione principale ai terminali d'entrata, al cavo d'alimentazione oppure al set cavo d'alimentazione fornito con il prodotto. Ogniqualvolta vi sia probabilità di danneggiamento della protezione, disinserite il cavo d'alimentazione fino a quando il collegamento a terra non sia stato ripristinato.

Per la messa a terra dei cavi LAN:

- se la vostra LAN copre un’area servita da più di un sistema di distribuzione elettrica, accertatevi che i collegamenti a terra di sicurezza siano ben collegati fra loro;
- i cavi LAN possono occasionalmente andare soggetti a pericolose tensioni transitorie (ad esempio, provocate da lampi o disturbi nella griglia d'alimentazione della società elettrica); siate cauti nel toccare parti esposte in metallo della rete.

Nessun componente di questo prodotto può essere riparato dall’utente. Qualsiasi lavoro di riparazione, messa a punto, manutenzione o assistenza va effettuato esclusivamente da personale specializzato.

Questo apparato non possiede un commutatore principale; si mette scotto tensione all'inserirsi il cavo d'alimentazione.
Consideraciones sobre seguridad

Este aparato se enmarca dentro de la clase I de seguridad y se encuentra protegido por una borna de puesta a tierra. Es preciso que exista una puesta a tierra continua desde la toma de alimentación eléctrica hasta las bornas de los cables de entrada del aparato, el cable de alimentación o el juego de cable de alimentación suministrado. Si existe la probabilidad de que la protección a tierra haya sufrido desperfectos, desenchufar el cable de alimentación hasta haberse subsanado el problema.

Puesta a tierra del cable de la red local (LAN):

- Si la LAN abarca un área cuyo suministro eléctrico proviene de más de una red de distribución de electricidad, cerciorarse de que las puestas a tierra estén conectadas entre sí de modo seguro.
- Es posible que los cables de la LAN se vean sometidos de vez en cuando a voltajes momentáneos que entrañen peligro (rayos o alteraciones en la red de energía eléctrica). Manejar con precaución los componentes de metal de la LAN que estén al descubierto.

Este aparato no contiene pieza alguna susceptible de reparación por parte del usuario. Todas las reparaciones, ajustes o servicio de mantenimiento debe realizarlos solamente el técnico.

Este producto no tiene interruptor de potencia; se activa cuando se enchufa el cable de alimentación.
Safety Information (Japan)

安全性の考慮

安全記号

⚠️ マニュアル参照記号。製品にこの記号がついている場合はマニュアルを参照し、注意事項等をご確認ください。

WARNING マニュアル中の「WARNING」は人身事故の原因となる危険を示します。

CAUTION マニュアル中の「CAUTION」は装置破損の原因となる危険を示します。

「WARNING」や「CAUTION」の項は飛ばさないで必ずお読みください。危険性に関する記載事項をよく読み、正しい手順に従った上で次の事項に進んでください。

これは安全性クラスIの製品で保護用接地端子を備えています。主電源から製品の入力配線端子、電源コード、または添付の電源コード・セットまでの間、切れ目のない安全接地が存在することが必要です。もし保護回路が損なわれたことが推測されるときは、接地が修復されるまで電源コードを外しておいてください。

LAN ケーブルの接地に関して:

- もし貴社のLANが複数の配電システムにより電力を受けていている領域をカバーしている場合には、それらのシステムの安全接地が確実に相互に結合されていることを確認してください。
- LAN ケーブルは時として危険な過度電圧（例えば雷や、配線設備の電力線での障害）にさらされることがあります。露出した金属部分の取扱いには十分な注意を払ってください。

本製品の内部にはユーザーが修理できる部品はありません。サービス、調整、保守および修理はサービス訓練を受けた専門家におまかせください。

本製品には電源スイッチがありません。電源コードを接続したとき電源入となります。

製品には、同梱された電源コードをお使い下さい。同梱された電源コードは、他の製品では使用出来ません。
Safety Information (China)

HP 网络产品使用安全手册

使用须知

欢迎使用惠普网络产品，为了您及仪器的安全，请您务必注意如下事项:

1. 仪器要和地线相接，要使用有正确接地插头的电源线，使用中国国家标准的220V电源。
2. 避免高温和尘土多的地方，否则易引起仪器内部部件的损坏。
3. 避免接近高温，避免接近直接热源，如直射太阳光、暖气等其它发热体。
4. 不要有异物或液体落入机内，以免部件短路。
5. 不要将磁体放置于仪器附近。

警告

为防止火灾或触电事故，请不要将该机放置于淋雨或潮湿处。

安装

安装辅助管理模块，请参看安装指南。

保修及技术支持

如果您按照以上步骤操作时遇到了困难，或想了解其它产品性能，请按以下方式与我们联络。

如是硬件故障:

1. 与售出单位或当地维修机构联系。
2. 中国惠普有限公司维修中心地址:
 北京市海淀区知春路49号希格玛大厦
 联系电话: 010-62623888 转6101
 邮政编码: 100080

如是软件问题:

1. 惠普用户响应中心热线电话: 010-65645959
2. 传真自动回复系统: 010-65645735
EMC Regulatory Statements

U.S.A.

FCC Class A

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause interference to radio communications. Operation of this equipment in a residential area may cause interference in which case the user will be required to correct the interference at his own expense.

Canada

This product complies with Class A Canadian EMC requirements.

Australia/New Zealand

This product complies with Australia/New Zealand EMC Class A requirements.

Japan

VCCI Class A

この装置は、情報処理装置等電波障害自主規制協議会（V C C I）の基準に基づくクラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。
Korea

사용자 안내문 : A 급기기

이기는 업무용으로 전자파 적합등록을 받은 기기 이오니, 판매자 또는 사용자는 이점을 주의하시기 바랍니다.

Taiwan

警告使用者：這是甲類的資訊產品，在居住的環境中使用時，可能會造成射頻干擾，在這種情況下，使用者會被要求採取某些適當的對策。
Index

Numerics
10/100Base-TX ports
 location on switch ... 1-4
1000Base-BX ... A-6
 fiber-optic cable specifications ... A-6
1000Base-LH ... A-6
 fiber-optic cable specifications ... A-6
1000Base-T
 1000Base-T
 fiber-optic cable specifications ... A-6

A
AC power connector
 location on back of switch ... 1-10
 acoustic specifications ... A-2
 auto MDI/MDI-X operation ... A-11, A-13
 HP Auto-MDIX feature ... A-9

B
back of switch
 description ... 1-10
 power connector ... 1-10
backbone switch
 topology with ... 2-22
basic switch configuration
 IP address ... 3-2
 manager password ... 3-2
 subnet mask ... 3-2
 Switch Setup screen ... 3-2
basic troubleshooting tips ... 4-1
Bootp
 automatic switch configuration ... 3-1
 for in-band access ... 2-16
buttons
 Clear button ... 1-9
 Reset button ... 1-9

cables
 connecting cables to switch ports ... 2-13
 effects of non-standard cables ... 4-2
 infrastructure requirements ... 2-5
 serial, for direct console connection ... 2-17
cables, twisted pair
 category 3, 4, 5 ... A-9
 cross-over cable pin-out ... A-12
 MDI-X to MDI connections ... A-11, A-13
 MDI-X to MDI-X connections ... A-12
 pin-outs ... A-11, A-13
 straight-through cable pin-out ... A-11, A-13
 switch-to-computer connection ... A-11, A-13
 switch-to-switch or hub connection ... A-12
 cables, twisted-pair
 HP Auto-MDIX feature ... A-9
 wiring rules ... A-9
 cables, twisted-pair connector pin-outs ... A-9
 cabling infrastructure ... 2-5
Clear button
 deleting passwords ... 1-9
 description ... 1-9
 location on switch ... 1-4, 1-9
 restoring factory default configuration ... 1-9, 4-12
 to delete password protection ... 3-4
CLI prompt, console
 displaying ... 2-18
configuration
 checking when troubleshooting ... 4-3
 DHCP/Bootp ... 3-1
 IP address ... 3-2
 IP address, manually ... 3-2
 manager password ... 3-2
 restoring factory defaults ... 1-9, 4-12
 subnet mask ... 3-2
 Switch Setup screen ... 3-2
 connecting the switch to a power source ... 2-12

C
 cabinet
 mounting the switch in ... 2-8
console
checking messages during troubleshooting ... 4-10
displaying the CLI prompt ... 2-18
features ... 2-15
how to connect in-band ... 2-16
how to connect out-of-band ... 2-16
serial cable connection ... 2-17
Switch Setup screen ... 3-2
Telnet access ... 3-5
terminal configuration ... 2-16
console port
definition ... 1-9
location on switch ... 1-4
cross-over cable
pin-out ... A-12

D
deleting passwords ... 1-9
description
back of switch ... 1-10
front of switch ... 1-4
LEDs ... 1-5
switch ... 1-1
desktop switch
sample topology ... 2-19
DHCP
automatic switch configuration ... 3-1
for in-band access ... 2-16
diagnostic tests ... 4-10
checking the console messages ... 4-10
checking the LEDs ... 4-10
end-to-end connectivity ... 4-11
testing the switch only ... 4-10
testing twisted-pair cabling ... 4-11
downloading new switch software ... 4-13

E
electrical specifications, switch ... A-1–A-2
EMC regulatory statements ... B-8
environmental specifications, switch ... A-2

F
factory default configuration, restoring ... 1-9, 4-12
Fan Status LED ... 1-6
Fault LED ... 1-6
behavior during self test ... 2-7
behaviors ... 1-6
flashing definition ... 1-6–1-7
location on switch ... 1-4
showing error conditions ... 4-4
features
console ... 2-15
switch ... 1-11
fiber-optic cables
1000Base-BX ... A-6
1000Base-LH ... A-6
1000Base-T ... A-6
flashing LEDs
error indications ... 4-4
front of switch ... 1-4
10/100Base-TX ports ... 1-4
Clear button ... 1-9
description ... 1-4
LEDs ... 1-6
network ports ... 1-5
Reset button ... 1-9
full-duplex fixed configuration
effects on network connections ... 4-1

H
horizontal surface
mounting switch on ... 2-12
HP Auto-MDIX
feature description ... A-9

I
in-band ... 3-1
in-band console access
types of ... 2-16
included parts ... 2-1
installation
connecting the switch to a power source ... 2-12
horizontal surface mounting ... 2-12
location considerations ... 2-5
network cable requirements ... 2-5
precautions ... 2-3
rack or cabinet mounting ... 2-8
site preparation ... 2-5
wall mounting ... 2-11
IP address
 configuring ... 3-2
IP telephones ... 2-20

L
LEDs
 behavior during self test ... 2-7
 checking during troubleshooting ... 4-10
 descriptions of ... 1-5
 error indications ... 4-4
 Fan Status ... 1-6
 Fault ... 1-6
 behavior during self test ... 2-7
 showing error conditions ... 4-4
 flashing definition ... 1-6–1-7
 location on switch ... 1-4
 on switch ... 1-6
 port
description ... 1-7
 Power ... 1-6
 behavior during self test ... 2-7
 Self Test ... 1-6
 behavior during self test ... 2-7
 link test ... 4-11
location for the switch, considerations ... 2-5

M
MDI-X to MDI network cable ... A-11, A-13
MDI-X to MDI-X network cable ... A-12
mounting the switch
 in a rack or cabinet ... 2-8
 precautions ... 2-3
 on a horizontal surface ... 2-12
 on a wall ... 2-11
 precautions ... 2-11
Multiple-Display Port LEDs ... 1-8

N
network cables
 HP Auto-MDIX feature ... A-9
 required types ... 2-5
 twisted-pair connector pin-outs ... A-9
 twisted-pair, wiring rules ... A-9
network devices
 connecting to the switch ... 2-13
 network ports
 connecting to ... 2-13
 location on switch ... 1-5
 types of ... 1-5
non-standard network cables, effects ... 4-2

O
out-of-band console access ... 3-5

P
parts, included with the switch ... 2-1
password
 configuring ... 3-2
passwords
 deleting with the Clear button ... 3-4
 if you lose the password ... 3-4
 passwords, deleting ... 1-9
 physical specifications, switch ... A-1
 Ping test ... 4-11
 pin-outs
 twisted-pair cables ... A-9
 PoE LED patterns ... 4-8
 PoE troubleshooting ... 4-8
 port configuration
 checking when troubleshooting ... 4-3
 port LEDs
 description ... 1-7
 normal operation ... 2-7
 ports
 connecting to ... 2-13
 console ... 2-16
 HP Auto-MDIX feature ... A-9
 network connections ... 2-13
 power connector ... 1-10
 Power LED ... 1-6
 behavior during self test ... 2-7
 behaviors ... 1-6
 location on switch ... 1-4
 power source
 connecting the switch to ... 2-12
 Power-over-Ethernet
 PoE power ... 1-2
 precautions
 mounting the switch ... 2-3
 power requirements ... 2-3
 preparing the installation site ... 2-5
Proactive Network tools
diagnostics with ... 4-9

R
rack
 mounting precautions ... 2-3
 mounting the switch in ... 2-8
regulatory statements ... B-8
Reset button
 description ... 1-9
 location on switch ... 1-4, 1-9
 restoring factory default configuration ... 4-12
resetting the switch
 factory default reset ... 4-12
 location of Reset button ... 1-9
 troubleshooting procedure ... 4-10

S
safety and regulatory statements ... B-1
safety specifications ... A-2
segment switch
 sample topology ... 2-20
self test
 Fault LED behavior ... 2-7
 LED behavior during ... 2-7
 Power LED behavior ... 2-7
Self Test LED ... 1-6
 behavior during factory default reset ... 4-12
 behavior during self test ... 2-7
serial cable
 for direct console connection ... 2-17
SFPs
 slot, location on switch ... 1-4
slots for SFPs
 location on switch ... 1-4
specifications
 acoustic ... A-2
 electrical ... A-1–A-2
 environmental ... A-2
 physical ... A-1
 safety ... A-2
straight-through cable
 pin-out ... A-11, A-13
subnet mask
 configuring ... 3-2
switch
 connecting to a power source ... 2-12
 description ... 1-1
 downloading new software ... 4-13
 electrical specifications ... A-1–A-2
 environmental specifications ... A-2
 features ... 1-11
 front panel description ... 1-4
 included parts ... 2-1
 LED descriptions ... 1-6
 mounting in a rack or cabinet ... 2-8
 mounting on a wall ... 2-11
 mounting on horizontal surface ... 2-12
 physical specifications ... A-1
switch operation
 verifying after installation ... 2-6
Switch Setup screen ... 3-2
 configuring a subnet mask ... 3-2
 configuring an IP address ... 3-2
 field descriptions ... 3-3
T
Telnet access to the console ... 3-5
terminal configuration ... 2-16
testing
 checking the console messages ... 4-10
 checking the LEDs ... 4-10
 diagnostic tests ... 4-10
 end-to-end communications ... 4-11
 link test ... 4-11
 Ping test ... 4-11
 switch operation ... 4-10
 switch-to-device communications ... 4-11
 twisted-pair cabling ... 4-11
tips for troubleshooting ... 4-1
topologies
 effects of improper topology ... 4-2
 samples of ... 2-19
troubleshooting … 4-1
 basic tips … 4-1
 checking port configuration … 4-3
 checking the console messages … 4-10
 checking the LEDs … 4-10
 common network problems … 4-1
 connecting to fixed full-duplex devices … 4-1
 diagnostic tests … 4-10
 effects of improper topology … 4-2
 effects of non-standard cables … 4-2
 link test … 4-11
 Ping test … 4-11
 Proactive Network tools … 4-9
 restoring factory default configuration … 4-12
 testing connections to other devices … 4-11
 testing end-to-end communications … 4-11
 testing the switch … 4-10
 testing the twisted-pair cables … 4-11
 twisted-pair cable
 cross-over cable pin-out … A-12
 pin-outs … A-9, A-11, A-13
 straight-through cable pin-out … A-11, A-13
 switch-to-computer connection … A-11, A-13
 switch-to-switch or hub connection … A-12
 testing … 4-11
 twisted-pair ports
 HP Auto-MDIX feature … A-9

V
 VT-100 terminal
 serial cable connection for … 2-17

W
 wall
 mounting switch on … 2-11
 wiring rules for twisted-pair cables … A-9
Technology for better business outcomes

To learn more, visit www.hp.com/networking

© Copyright 2014 Hewlett-Packard Development Company, L.P.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP will not be liable for technical or editorial errors or omissions contained herein.