Abstract
This document includes feature, installation, and configuration information about HPE Smart Array SR Secure Encryption and is for the person who installs, administers, and troubleshoots servers, compute modules, and storage systems. Hewlett Packard Enterprise assumes you are qualified in the servicing of computer equipment and trained in recognizing hazards in products with hazardous energy levels.
Notices

© Copyright Hewlett Packard Enterprise Development LP

The information contained herein is subject to change without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Links to third-party websites take you outside the Hewlett Packard Enterprise website. Hewlett Packard Enterprise has no control over and is not responsible for information outside the Hewlett Packard Enterprise website.

Microsoft®, Windows®, and Windows Server® are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Google™ is a trademark of Google Inc.
Overview
- About HPE Secure Encryption.. 5
- Benefits... 5
- Solution components.. 6

Planning
- Encryption setup guidelines... 13
- Recommended security settings at remote sites.......................... 13
- Encrypted backups.. 14
- Security domains... 14
- Deployment scenarios.. 14
 - Remote and local key management requirements........................ 14

Configuration
- Local Key Management Mode... 15
 - Configuring the controller (local mode)................................. 15
 - Express Local Encryption... 17
- Remote Key Management Mode.. 18
 - Configuring Remote Key Management Mode............................ 19
 - Configuring the controller (remote mode)............................... 37
- Changing from Local Key Management Mode to Remote Key Management Mode.. 39

Operations
- Accessing Encryption Manager.. 40
- Opening Encryption Manager... 40
- Logging into Encryption Manager... 40
- Managing passwords... 41
 - Set or change the Crypto Officer password............................ 41
 - Set or change the password recovery question....................... 41
 - Set or change user account password.................................... 42
 - Set or change the controller password.................................. 43
 - Suspending the controller password....................................... 44
 - Resuming the controller password....................................... 44
- Working with keys... 45
 - Changing the Master Encryption Key..................................... 45
 - Rekeying the Drive Encryption Keys...................................... 46
 - Rescanning keys... 46
 - Enabling Encryption Key Manager Authentication.................. 47
 - Volatile keys... 47
- Creating a plaintext volume.. 51
- Converting plaintext volumes into encrypted volumes................. 54
- Changing key management modes.. 55
- Enabling/disabling plaintext volumes....................................... 56
- Enabling/disabling the firmware lock.. 56
- Enabling/disabling local key cache.. 57
- Importing drive sets in Local Key Management Mode................. 58
Importing drives with different Master Keys

Maintenance

Controllers

- Clearing the controller
- Replacing an encrypted controller
- Replacing a server while retaining the controller
- Preconfiguring replacement components
- Flashing firmware

Drives

- Replacing a physical drive

Groups

- Locating groups associated with a drive

Displaying log information

Running queries

Troubleshooting

Common issues

- Lost or forgotten Crypto Officer password
- Lost or forgotten controller password
- Lost or forgotten Master Key

Forgotten which Master key goes with which drive

Logical drives remain offline

Master key not exporting

Testing the connection between iLO and the ESKM

Potential errors encountered

Clearing the encryption configuration

Support and other resources

Support and other resources

- Accessing Hewlett Packard Enterprise Support
- Accessing updates
- Customer self repair
- Remote support
- Warranty information
- Regulatory information
- Documentation feedback

Appendix

Encryption algorithms

Glossary

Documentation feedback
Overview

About HPE Secure Encryption

HPE Secure Encryption is a controller-based, enterprise-class data encryption solution that protects data at rest on bulk storage hard drives and SSDs attached to a compatible HPE Smart Array Controller. The solution is compatible with the HPE Secure Key Manager, and can operate with or without the presence of a key manager in the environment, depending on individual customer settings.

Secure Encryption provides encryption for data at rest as an important component for complying with sensitive data protection requirements including PCI-DSS, HIPAA/HITECH, Sarbanes/Oxley, and state privacy laws. Secure Encryption secures any data deemed sensitive and requiring extra levels of protection through the application of XTS-AES 256-bit data encryption. Many companies under government regulations require that sensitive privacy data must be secured and uncompromised using NIST-approved algorithms and methodologies for key management. Secure Encryption is validated for FIPS-140-2 Level 2 for Smart Array Px3x controllers and is validated for FIPS 140-2 Level 1 for Smart Array Px4x controllers. The Smart Array Gen10 Performance RAID controllers are on the Validation Program FIPS 140-2 Implementation Under Test List with expected validation complete in 2018. For more information about the controllers that have been validated, see the Cryptographic Module Validation Program (CMVP) on the National Institute of Standards and Technology website.

Secure Encryption requires the following core components:

- ProLiant Gen8 or later server
- Smart Array Controller. For a list of currently supported controllers, see "Smart Array Controller"
- Secure Encryption license, per server
- HPE Smart Storage Administrator, version 1.60 or later
- Compatible SAS/SATA hard drive or SSD
- Compatible storage enclosure

Secure Encryption can operate in Remote Key Management Mode, or Remote Mode, through the use of a separate, clustered, appliance-based server called the HPE Enterprise Secure Key Manager. The HPE ESKM manages all encryption keys throughout the data center. When utilizing the ESKM, the communication path between the ESKM and the Smart Array Controller is established through the HPE iLO interface. The controller communicates with the ESKM as new keys are generated and as old keys are retired. The ESKM acts as a key vault where all keys are managed via a web browser interface. For more information about the ESKM, see "Enterprise Secure Key Manager." For more information about iLO connectivity, see "iLO."

The following additional components are required for operating Secure Encryption in Remote Mode:

- Integrated Lights Out (iLO) Advanced or Scale Out Edition license, per ProLiant server
- Enterprise Secure Key Manager

Secure Encryption can also operate without an attached key management solution through Local Key Management Mode, or Local Mode.

Benefits

Broad encryption coverage
• Encrypts data on both the attached bulk storage and the cache memory of Smart Array Controllers
• Supports any hard drive or SSD in the Smart Drive portfolio for ProLiant Gen8 or later servers or the Supported Storage Enclosures

High availability and scalability

• Scales to meet individual data privacy requirements
 ◦ Server counts up to 25,000
 ◦ Millions of drives
 ◦ Millions of encryption keys
• The ESKM supports High Availability Clustering, from 2-8 nodes.

Simplified deployment and management

HPE Smart Storage Administrator configures the cryptographic features of Secure Encryption, and manages the controller and other direct-attached storage devices

Helps users meet compliance regulations

• The ESKM is FIPS 140-2 Level-2 validated, certificate #1922
• The HPE Smart Array Gen8 Px3x family of controllers is FIPS 140-2 Level-2 validated; certificate #2375
• The HPE Smart Array Gen9 Px4x controllers P244br, P246br, P440, P441, and P741m are FIPS 140-2 Level-1 validated; certificate #2506

Solution components

HPE Smart Storage Administrator

The HPE SSA is a configuration and management tool for HPE Smart Array controllers. Starting with HPE ProLiant Gen8 servers, HPE SSA replaces ACU with an enhanced GUI and additional configuration features.

The HPE SSA exists in three interface formats: the HPE SSA GUI, the HPE SSA CLI, and HPE SSA Scripting. Although all formats provide support for configuration tasks, some of the advanced tasks are available in only one format.

Some HPE SSA features include the following:

• Supports online array capacity expansion, logical drive extension, assignment of online spares, and RAID or stripe size migration
• Provides diagnostic and SmartSSD Wear Gauge functionality on the Diagnostics tab
• For supported controllers, provides access to additional features.

For more information about HPE SSA, see the [Hewlett Packard Enterprise website](https://www.hpe.com).

Minimum requirements

For minimum operating system requirements to run any SSA format, see the [Hewlett Packard Enterprise website](https://www.hpe.com).
Minimum video requirements to run the SSA GUI include a minimum monitor resolution of 1024x768 and 16-bit color. The GUI supports the following browsers:

- Mozilla Firefox 9.0 or later
- Microsoft Internet Explorer 8.0 or later
- Google Chrome

HPE Smart Array Controller

Secure Encryption is supported on

- HPE Smart Array Gen10 E-class (E208i-a, for example) and P-class (P408i-a, for example) controllers
- Smart Array PX3X and PX4X controllers
- HPE HX4X Smart HBAs operating in RAID mode

For more information about controllers supporting Secure Encryption, see the Hewlett Packard Enterprise website.

For more information about Smart Array controllers, see the appropriate Smart Array controller user guide on the Hewlett Packard Enterprise website.

Encryption features

Most Secure Encryption features and security settings are available through HPE Smart Storage Administrator. Additional features for Remote Mode deployments are available through Enterprise Secure Key Manager and Integrated Lights Out (iLO).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic key management</td>
<td>Encryption keys are automatically created, saved, and deleted by Smart Array Controllers without the need for user intervention or management when logical drives are created or deleted.</td>
<td>—</td>
</tr>
<tr>
<td>Compliance</td>
<td>Secure Encryption has been designed to meet NIST-approved standards. The ESKM has completed FIPS 140-2 Level-2 validation, certificate #1922. Secure Encryption helps enterprises comply with the data privacy and protection requirements associated with the U.S. Health Insurance Portability and Accountability Act (HIPAA) and the Sarbanes-Oxley Acts.</td>
<td>For more information, see "Encryption Algorithms."</td>
</tr>
</tbody>
</table>

Table Continued
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller key cache</td>
<td>Smart Array Controllers can optionally store all keys required at boot time inside the controller, enabling the server to survive a variety of network outages.</td>
<td>Remote Mode only</td>
</tr>
<tr>
<td>Controller password</td>
<td>Protects the server in the event of theft by applying a secondary password upon boot to lock down the controller.</td>
<td>For more information, see "Set or change the controller password."</td>
</tr>
<tr>
<td>Dynamic Encryption</td>
<td>Enables smooth transitions between local and remote modes, the conversion of plaintext data to encrypted data, and rekey services for both data and key wraps.</td>
<td>—</td>
</tr>
<tr>
<td>Encryption keys</td>
<td>Data is protected using a series of keys that provide layered protection at the volume and drive levels. The solution utilizes XTS-AES 256-bit encryption.</td>
<td>—</td>
</tr>
<tr>
<td>Enterprise Secure Key Manager</td>
<td>The ESKM unifies and automates an organization's encryption controls by securely creating, protecting, serving, controlling, and auditing access to encryption keys.</td>
<td>Remote Mode only. For more information, see "HPE Enterprise Secure Key Manager."</td>
</tr>
<tr>
<td>ESKM key search</td>
<td>Individual Drive Encryption Keys are visible by serial number identification on the ESKM to enable unique tracking and management from a central location. The ESKM supports query by serial number, server name, bay number, PCI slot, and date.</td>
<td>Remote Mode only. For more information, see "Running queries."</td>
</tr>
<tr>
<td>Firmware lock</td>
<td>Prevents controller firmware from being updated unintentionally or by unauthorized personnel.</td>
<td>For more information, see "Enabling/disabling the firmware lock."</td>
</tr>
<tr>
<td>Hardware-based encryption</td>
<td>Utilizes the Smart Array Controller hardware to accelerate all cryptographic algorithms when securing data and keys.</td>
<td>For more information about Smart Array controllers, see the website.</td>
</tr>
</tbody>
</table>

Table Continued
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Lights Out (iLO)</td>
<td>iLO Management is a comprehensive set of embedded management features supporting the complete lifecycle of the server, from initial deployment, through ongoing management, to service alerting and remote support. iLO is provided on all ProLiant Gen8 and later servers. iLO 4 Advanced or Scale Out editions v1.40 or later connect and auto-register with the ESKM. iLO provides key exchange support between the Smart Array Controller and the ESKM to enable pre-boot support for OS disk encryption. Audit support is provided for all key management transactions.</td>
<td>Remote Mode only. For more information, see "iLO."</td>
</tr>
<tr>
<td>Instant volume erase</td>
<td>Provides ability to instantly, cryptographically erase logical volumes without having to delete the volume first</td>
<td>—</td>
</tr>
<tr>
<td>Key rotation support</td>
<td>Supports the rekeying of all keys utilized by the controller to enable a robust key rotation strategy</td>
<td>—</td>
</tr>
<tr>
<td>Local Key Management Mode</td>
<td>Focused on single server deployments where there is one Master Encryption Key per controller that is managed by the user. In Local Mode, all volumes still have their own unique key for data encryption.</td>
<td>For more information, see "Local Key Management Mode."</td>
</tr>
<tr>
<td>One-way encryption</td>
<td>As a security feature, data volumes cannot be converted back to plaintext after the volume is encrypted. Restoration of data is required to revert back to plaintext.</td>
<td>—</td>
</tr>
<tr>
<td>Pre-deployment support</td>
<td>Supports the ability to preconfigure all cryptographic security settings while in a server, then store the powered-off controller for later use while retaining the settings securely.</td>
<td>—</td>
</tr>
</tbody>
</table>

Table Continued
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Key Management Mode</td>
<td>Designed for enterprise-wide deployments with the Smart Array Controller. It requires the Enterprise Secure Key Manager to manage all keys related to encryption deployments. All keys are managed automatically between the Smart Array Controller, iLO and the ESKM.</td>
<td>For more information, see "Remote Key Management Mode."</td>
</tr>
<tr>
<td>Security reset function</td>
<td>The feature clears all secrets, keys, and passwords from the controller, and places the controller’s encryption configuration in a factory new state.</td>
<td>For more information, see "Clearing the encryption configuration."</td>
</tr>
<tr>
<td>HPE Smart Storage Administrator</td>
<td>HPE Smart Storage Administrator v1.60.xx.0 and later provides the configuration and management of the cryptographic features of Secure Encryption associated with Smart Array Controllers.</td>
<td>For more information, see "Smart Storage Administrator."</td>
</tr>
<tr>
<td>Two encryption roles</td>
<td>Secure Encryption supports two roles for managing encryption services: a Crypto Officer role and a User role.</td>
<td>—</td>
</tr>
<tr>
<td>Volume level encryption</td>
<td>Provides flexibility in allowing the user to selectively encrypt at the volume or logical drive level regardless of RAID level.</td>
<td>—</td>
</tr>
</tbody>
</table>

HPE Smart Array SR SmartCache

HPE Smart Array SR SmartCache can be used in conjunction with Secure Encryption. HPE Smart Array SR SmartCache enables solid state drives to be used as caching devices for hard drive media. Data can be accessed from the solid state drive instead of hard drives. Data stored on the SmartCache drive utilizes the same encryption methods and keys as the originating volume where the data is permanently stored, extending protection to the SmartCache drives.

SmartCache provides the following features:

- Accelerates application performance
- Provides lower latency for transactions in applications
- Supports all operating systems, without the need for changes

SmartCache requires a SmartCache license. For more information, or to obtain a license, see the Hewlett Packard Enterprise website.

HPE iLO

iLO Management is a set of embedded management features that support the complete life cycle of the server, from initial deployment, to ongoing management, to service alerting and remote support.
The iLO subsystem is a standard component of HPE ProLiant servers that simplifies initial server setup, server health monitoring, power and thermal optimization, remote server administration, and key exchanges between the ESKM and the Smart Array Controller. The iLO subsystem includes an intelligent microprocessor, secure memory, and a dedicated network interface. This design makes iLO independent of the host server and its operating system. This system provides client credentials, registration to the key management database, key management, encryption activation, and audit support for the devices within the platform.

For the full implementation of HPE Secure Encryption with the ESKM, HPE iLO Advanced or HPE iLO Scale Out editions are required to connect and auto-register with the ESKM. iLO provides key exchange support between the Smart Array Controller and the ESKM to enable pre-boot support for OS disk encryption. Audit support is provided for all for key management transactions.

For more information about iLO, see the Hewlett Packard Enterprise website.

Enterprise Secure Key Manager

Enterprise Secure Key Manager acts as a secure, reliable repository for keys used by HPE Secure Encryption. In Remote Key Management Mode, iLO connects to the ESKM using username/password and digital certificate authentication to securely store and retrieve keys. Each iLO must be registered as an ESKM user by an administrator, or Crypto Officer, of the ESKM for access to be granted. If a user is registered and has the necessary permissions, the ESKM accepts requests and provides keys to the client. As standard practice, communication with the ESKM is configured for SSL to ensure the security of the connection and authorized access to keys.

The ESKM keys and users can be organized into different groups depending on the policies set by an administrator. These groups determine whether a particular user can retrieve a particular key, and supports both key sharing and separation for multi-tenant and hosted service provider environments.

Characteristics

• Used only in Remote Mode, requiring a network connection
• Supports high-availability clustering of 2-8 ESKM nodes for automatic replication and failover
• Provides key services to iLO clients using username and password, certificate authentication, or both
• Communicates using SSL encryption to ensure the security of the connection and authorized access to keys
• Provides reliable, secure access to business-critical encryption keys
• Supports audit and compliance requirements, including PCI-DSS and HIPAA/HITECH
• Provides scalability for multiple data centers, thousands of clients, and millions of keys
• Uses a FIPS-140-2 Level 2 validated secure appliance which supports the latest NIST cryptographic guidance

ESKM and key management

The Smart Array Controller manages keys by separating them into the following categories:

• Keys stored off-controller on the ESKM
• Keys stored on the drive media
• Keys stored on the controller
The separation of keys helps ensure the safety of the data residing on the drives, the portability of the drives, and the ability to manage keys in a centralized manner. The controller uses the ESKM to back up a segment of its keys using an encryption method that protects the keys from exposure in plaintext.

Licensing

IMPORTANT:

HPE Special Reminder: Before enabling encryption on the Smart Array controller module on this system, you must ensure that your intended use of the encryption complies with relevant local laws, regulations and policies, and approvals or licenses must be obtained if applicable.

For any compliance issues arising from your operation/usage of encryption within the Smart Array controller module which violates the above mentioned requirement, you shall bear all the liabilities wholly and solely. HPE will not be responsible for any related liabilities.

Depending on when you initially set up Secure Encryption, licensing is based on the number of servers requiring encryption, or is on a per-drive basis. If configuring after June 2015, you will need one Secure Encryption license (C9A82AAE) per server. Once configured, Secure Encryption applies to all storage devices internally or externally attached to the Smart Array controllers in the server.

Though you are required to purchase an entitlement license for each server to authorize use, HPE Smart Storage Administrator does not require that you input a license key to enable encryption via a configuration change in the controller and iLO.

In addition to a physical Enterprise Secure Key Manager, Secure Encryption operating in Remote Key Management Mode requires the following licenses:

- Integrated Lights Out (iLO), Advanced or Scale Out edition, version 1.4 or later
- One Enterprise Secure Key Manager Client License per ProLiant server
Planning

Encryption setup guidelines

When setting up Secure Encryption, consider the information described in the following table.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Options</th>
<th>Deciding factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption mode</td>
<td>• Local Key Management Mode</td>
<td>Choose Local Key Management Mode when:</td>
</tr>
<tr>
<td></td>
<td>• Remote Key Management Mode</td>
<td>• Data is stored at a site without network access.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In a small deployment center or lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Manual key management is available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Choose Remote Key Management Mode when:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Using a large number of servers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A network is available between the ESKM and a server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatic key management is preferred, including backups and redundancy configurations</td>
</tr>
<tr>
<td>Plaintext volumes</td>
<td>• Allow</td>
<td>Allow future plaintext logical drives when:</td>
</tr>
<tr>
<td></td>
<td>• Disallow (default)</td>
<td>• Drive migration might occur to a non-encrypting controller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data is not privacy-sensitive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information, see "Enabling/disabling plaintext volumes."</td>
</tr>
<tr>
<td>Key naming conventions</td>
<td>Master Encryption Keys are customizable.</td>
<td>Create a specific naming convention when managing multiple keys and multiple servers.</td>
</tr>
</tbody>
</table>

Recommended security settings at remote sites

For added security, Hewlett Packard Enterprise recommends the following configuration when operating Secure Encryption at remote sites outside the main data center.

- **Firmware lock enabled**
- **Controller password enabled**
- **Plaintext volumes disabled**
- **Local Key Cache disabled**
Applies to Remote Key Management Mode only

Encrypted backups

At system startup, all encrypted data-at-rest becomes accessible to the host system in unencrypted form via the controller and the appropriate keys. This method of startup allows the system to boot into an operating system installed on an encrypted volume. As a result, encrypted backups are not available, and all data appears unencrypted when accessed from the host system and placed on tape. Software or hardware utilizing an independent encryption feature is not impacted by Secure Encryption.

Security domains

A security domain is a blueprint for separating out different groups of servers or key management escrows where access to a set of keys is inhibited by the structure of the various domains. The best mechanisms for establishing separate security domains are either through the use of separate ESKM or via the use of groups within the ESKM. Unique groups provide a software mechanism for each server to partition off their key sets from one server to another. Groups are created on the ESKM and assigned to a server via the HPE iLO Key Manager page. For more information, see "Remote Key Management Mode."

Deployment scenarios

Remote and local key management requirements

Use the table below to determine which encryption mode is right for you.

<table>
<thead>
<tr>
<th>Mode parameters</th>
<th>Local Key Management Mode</th>
<th>Remote Key Management Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of servers</td>
<td><99 (recommended)</td>
<td>100 or more</td>
</tr>
<tr>
<td>ESKM available</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Integrated Lights Out (iLO)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Advanced or Scale Out License</td>
<td></td>
<td></td>
</tr>
<tr>
<td>available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement to escrow keys</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Manual tracking of keys</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Local Key Management Mode

Local Key Management Mode, or Local Mode, is a solution designed for small to medium-size data centers using few encrypting controllers. The solution utilizes a paraphrase password, or Master Encryption Key name, to set the security on the controller and enable encryption. The Master Encryption Key must be tracked independently of the controllers in case the controller needs replacement or drive migration is required among controllers with different passwords. In local mode, the Master Key name is considered a cryptographic secret and should be protected as such. Key creation and management is maintained at the local controller level without the use of a key manager.

Characteristics

• Requires physical paraphrase password management, such as writing and storing Master Key information in a notebook or computer file

• Utilizes one paraphrase password-derived 256-bit key to encrypt a unique, per-volume XTS-AES 256-bit data encryption key

Prerequisites

• An installed Smart Array Controller compatible with Secure Encryption

• A valid Secure Encryption license for each server to be encrypted. This license must be purchased, but it does not need to be input into HPE Smart Storage Administrator.

• HPE Smart Storage Administrator v1.60.xx.0 and later

• ProLiant Gen8 or later server

Configuring the controller (local mode)

IMPORTANT:
Hewlett Packard Enterprise recommends that you keep a record of the Master Encryption Keys when encryption is configured in Local Mode. The local Master Encryption Key is not displayed by any available tool or firmware because it is considered a cryptographic secret by FIPS 140-2. Secure Encryption design follows the NIST architecture requirements and does not allow Hewlett Packard Enterprise to assist in the recovery of a lost Master Encryption Key.

To configure Secure Encryption using command line or scripting methods, see the HPE Smart Storage Administrator user guide.

To configure the controller to operate in Local Key Management Mode:

Procedure

1. Open Encryption Manager.

2. Click Perform Initial Setup.
The following screen appears.

3. Complete the following:

- Under **Setup Type**, select **Full Setup**.
- Under **New Password**, enter and then re-enter the Crypto Officer password in the fields provided.
- Under **Encryption Mode**, select either:
 - **Enable and Allow Future Plaintext Volumes**: Allowing future plaintext volumes still requires authentication by the Crypto Officer or the User before a plaintext volume can be created.
 - **Enable and Disallow Future Plaintext Volumes**: This option prevents the creation of new plaintext volumes on the controller. This setting can be changed later by the Crypto Officer. Selecting this option does not prevent the migration of a set of drives with existing plaintext volumes to the controller.
• Under **Key Management Mode**, select **Local Key Management Mode**.

• Enter the **Master Key** name in the field provided. The Master Encryption Key name must be between 10 and 64 characters.

4. Click **OK**.

5. A warning appears, prompting the user to record the Master Encryption Key. Click **Yes** to continue.

6. If you have read and agree to the terms of the EULA, select the check box and click **Accept**.

7. A summary screen appears, indicating the controller has been successfully configured for encryption use. Click **Finish** to continue.

8. The **Encryption Manager** screen appears with updated **Settings**, **Accounts**, and **Utilities** options.

IMPORTANT: Hewlett Packard Enterprise recommends setting up a password recovery question and answer after initial configuration. If the Crypto Officer password is lost and a recovery question and answer have not been set, you will need to erase and reconfigure all Secure Encryption settings in order to reset the Crypto Officer password. For more information, see "**Set or change the password recovery question**."

To configure Secure Encryption using command line or scripting methods, see the HPE Smart Storage Administrator user guide.

Express Local Encryption

About Express Local Encryption

IMPORTANT: Express Local Encryption configures Secure Encryption in Local Key Management Mode. Once configured, you will not have a Crypto Officer password.

IMPORTANT: Express Local Encryption uses a randomly-generated Master Encryption Key. Features requiring the input of a Master Encryption Key, such as migrating volumes to a new controller, will not be available while Express Local Encryption is enabled.

Express Local Encryption configures the controller with predetermined encryption settings and a randomly-generated Master Encryption Key. Once configured, encryption settings changes will not be possible without clearing the encryption configuration.

Express Local Encryption enables the following:

• Controller encryption

• Local Key Manager Mode

• Random crypto password, not recoverable

• Random master key name, not recoverable

• Future plaintext volumes not allowed
Setting up Express Local Encryption

Procedure

1. **Open Encryption Manager**.

2. Click **Perform Initial Setup**. A new window appears.

3. Under **Setup Type**, select **Express Local Encryption**. Once selected, all other encryption setup options disappear. Click **OK** to continue.

4. A warning appears. Click **Yes** to continue.

5. If you have read and agree to the terms of the EULA, select the check box and click **Accept**.

6. The **Encryption Manager** screen appears with updated **Settings**, **Accounts**, and **Utilities** options.

Remote Key Management Mode

IMPORTANT:
Enterprise Secure Key Manager must already be installed and configured to operate Secure Encryption in Remote Mode. For more information, see "Configuring the ESKM."

In Remote Key Management Mode, keys are imported and exported between the controller and the ESKM, which provides a redundant, secure store with continuous access to the keys. To enable key exchanges between the Smart Array Controller and the ESKM, a network connection is required both during pre-OS boot time and during OS operations. Because the controller does not have direct network access capabilities, iLO provides the necessary network access to facilitate key exchanges between the controller and the ESKM. iLO has both network presence and is constantly running on AUX power.
regardless of the server state. The keys exchanged between iLO, ESKM, and the controller are all secured.

A valid Secure Encryption license for each server to be encrypted is required. This license must be purchased, but it does not need to be input into HPE Smart Storage Administrator.

Characteristics

- High volume key storage
- Keys are kept in separate storage from servers to protect against physical removal
- Requires network availability and a remote key management system

Configuring Remote Key Management Mode

IMPORTANT:
Secure Encryption and other encryption client products must be coordinated for a successful installation and configuration. It is recommended to refer to each product’s user guide to ensure proper installation and encryption protection.

To configure Secure Encryption to operate in Remote mode:

1. **Configure the ESKM.** For more information about installation, configuration and operation of the ESKM, see the Enterprise Secure Key Manager user guide and the Installation and Replacement guide.
2. Connect iLO to the ESKM.
3. Install HPE SSA. For more information, see the HPE Smart Storage Administrator user guide.
4. Configure the Smart Array Controller.

Configuring the ESKM

Procedure

1. **Log in to the ESKM.**
2. **Create initial user accounts.**
 a. Create an account called **DeployUser.**
 b. Create an account called **MSRUser.**
3. **Create a group.**
4. **Assign the user account for hosting Master Encryption Keys to the group created in step 3.**
5. **Create a Master Encryption Key to be used by the controller.** Be sure to set the owner of the key to the user account created to host the Master Encryption Key created in Step 2b.
6. **Place the Master Encryption Key in the group created in step 3.**

Logging in to the ESKM
Procedure

1. Open a new browser window and enter the IPv4 address and web administration port number using https. The port is user-configurable. The default port is 9443.

2. Log in using administrator credentials.

Adding a user

IMPORTANT:
Passwords must contain at least five different characters. Passwords cannot:

- Contain only whitespace
- Resemble a phone number, dictionary word or reversed dictionary word
- Be based on the username associated with the password

The deployment user is the first user account created. It allows iLO to connect to the ESKM and begin using keys. Subsequent standard user accounts are assigned Master Encryption Keys.

Procedure

1. Log in to the ESKM.

2. Click the Security tab.

3. Click Local Users and Groups.
4. Under **Local Users**, click **Add**.

User and Group Configuration

Local Users

<table>
<thead>
<tr>
<th>Username</th>
<th>KMIP-Enabled</th>
<th>User Administration Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeployUser</td>
<td>☑</td>
<td>☐</td>
</tr>
</tbody>
</table>

1 - 1 of 1

The dialog above shows a deploy user being added. The following fields appear.
5. Complete the following fields:

- Username
- Password
- Confirm Password
- If this is the deployment user account, select the User Administration Permission and Change Password Permission check boxes.
- If this is a standard user account, leave the User Administration Permission and Change Password Permission check boxes empty.
- Leave the Enable KMIP check box empty.

6. Click Save.
Adding a group

Groups enable you to organize a set of servers together and restrict access only to a specific set of users.

Procedure

1. **Log in to the ESKM**.
2. Click on the **Security** tab.
3. Click **Local Users and Groups**.
4. Under **Local Groups**, click **Add**.
5. Enter the group name in the **Group** entry field.

6. Select ESKM in the **Group Type** field.

7. Click **Save**.

Assigning a user to a group

1. **Log in to the ESKM**.

2. Click on the **Security** tab.
3. Click **Local Users and Groups**.

4. Under **Local Groups**, select the group name and click **Properties**.
A new window appears, listing the group properties.

Security > Local Users & Groups > Local Groups

Local Group Configuration

Local Group Properties

Group: Sample_Group
 Group Type: ESKM
 Group Sub-type: Users

Back

User List

Filtered by - - - - where value contains

No local users.

Add

5. Click Add.

6. Enter the Username in the field provided.
7. Click Save.

Creating keys
About keys
Master keys are used to wrap the drive keys and are stored on the ESKM in remote mode. In general, one master key is used for a group of servers that provide similar functionality or belong to a specific department. This allows you to swap the drives among the servers. Depending on your environment, you can create one master key for a server, a project, a department, or for an entire deployment.

The ESKM does not differentiate between key types such as Master Encryption Key or Drive Encryption Key. If creating a Master Encryption Key, Hewlett Packard Enterprise recommends applying a specific Master Encryption Key naming convention to distinguish the Master Key from all other keys created in the ESKM. You should have one Master Key for each iLO.

Creating a Master Key

Procedure
1. **Log in to the ESKM**.
2. Click the **Security** tab.
3. From the left side panel, expand the **Keys** menu, and then click **Create Keys**.

The following screen appears.
4. Under the section **Create Key**, complete the following:

 - **Key Name**: Enter the preferred key name. The name must consist only of US-ASCII letters, numbers, or the underscore or hyphen characters, and must be between 8 and 64 characters. The minimum character length is required by the Smart Array controller, not by the ESKM.

 - **Owner Username**: Enter the name of the user account to be paired with the key. If creating the Master Encryption Key, do not assign keys to the deployment user account.

 - **Algorithm**: Select **AES-256**.

 - Select the **Exportable** checkbox. Leave the remaining fields as the default values.

5. Click **Create**. You will receive a notification that the key was created successfully.

Placing a key in a group

A key must be assigned a group in order to enable access by iLO. To place a key in a group, do the following:

1. **Run a key query and locate the key created**.
2. **Assign the key to a group**.

Running a key query

1. **Log in to the ESKM**.
2. Click the **Security** tab.
3. From the left side panel, expand the **Keys** menu and click **Query Keys**.

The following screen appears.
4. Click Add.
The following screen appears.

5. Complete the following fields:
 a. Query Name
 b. Query Type
 c. Description

6. Click Next.
The following screen appears.
7. Under **Create Query**, complete the following:

 a. **Query Name**: Enter a query name here. Your query is saved for future use.

 b. **Choose Keys Where** drop down menu: select **Owner**, or **Key Name**. Two additional **Choose Keys Where** fields appear.

8. Complete the following fields:

 a. **Field 1**: Leave as default.

 b. **Field 2**: Leave as default.

 c. **Field 3**: Enter the user account name associated with the Master Key, or the Master Key name, depending on your selection for **Choose Keys Where**.

9. Click **Save and Run Query**. A results screen appears, displaying the Master Key name.

Assigning a key to a group

1. **Log in to the ESKM**.

2. **Run a key query for the preferred key**.

3. Select the key, and then click **Properties**.
4. A new **Key and Policy Configuration** screen appears. Click the **Permissions** tab.

5. Under **Group Permissions**, complete the following:
a. In the Group field, enter the Group name created previously.

b. Under Export, select Always.

c. Under Full, leave deselected (default).

6. Click Save. The screen will refresh and list the group permissions.

Configuring iLO

Integrated Lights Out (iLO) manages key exchanges between the ESKM and the Smart Array controller. iLO initially uses user credentials with administrative privileges created on the ESKM to automatically register and create a private, unique, MAC address-based username account for all key exchanges. The administrative account is termed the deployment user account. All iLO accounts can be viewed in the ESKM under Users And Groups and take the form iLO-MAC Address. The iLO-specific account is placed in the group indicated in the group field on the iLO Key Manager page. If the group does not exist, iLO creates one and places the account in that group along with all future keys generated.

Prerequisites

- The ESKM must be configured with a deployment user. For more information, see "Configuring the ESKM."
- iLO must be installed and operating properly with the appropriate iLO-supporting license.

For more information on installing and configuring iLO, including scripting and command line methods, see the Hewlett Packard Enterprise website.

Connecting iLO to the ESKM

If you intend to use a second ESKM for a redundant key repository, complete the fields under Secondary Key Server and select the Enable Enterprise Secure Key Manager Redundancy check box. Hewlett Packard Enterprise strongly recommends a redundant pair of ESKM devices in a cluster configuration.

To connect iLO to the ESKM:

Procedure

1. Log in to iLO using your server's credentials.

2. From the left side panel, expand the Administration menu and select Key Manager.
The Enterprise Secure Key Manager configuration page appears.
3. Under **Key Manager Servers**, complete the following:

 a. **Primary Key Server**:

 - Enter the primary IP address of the ESKM in the **Address** field.
 - Enter the primary port number of the ESKM in the **Port** field. This port number should match the value on the ESKM, located on the **Device** tab under **KMS Server Settings**. SSL should be enabled on the ESKM as well.

 b. Optional: **Secondary Key Server**:

• Enter the secondary IP address of the ESKM in the **Address** field.
• Enter the secondary port number of the ESKM in the **Port** field.

c. Optional: Select the **Require Redundancy** check box. This option enables iLO to verify that encryption keys are copied to all configured key servers. For configurations with a primary and secondary key server, Hewlett Packard Enterprise recommends enabling this option.

4. Click **Apply**. A confirmation message appears.

5. Under **Key Manager Configuration**, enter the group name created previously in the ESKM in the **Group** field.

6. Under **ESKM Administrator Account**, complete the following fields using the deployment username and password created earlier on the ESKM.

 a. **Login Name**: Enter the deployment account username.

 b. **Password**: Enter the deployment account password.

7. Click **Update ESKM**. A confirmation screen appears, indicating the configuration was saved and connected successfully.

Configuring the controller (remote mode)

To configure Secure Encryption using command line or scripting methods, see the HPE Smart Storage Administrator user guide.

To configure the controller to operate in Remote Key Management Mode:

1. **Open Encryption Manager**.

2. **Click Perform Initial Setup**.

![Encryption Manager](image)

Encryption Overview

To begin configuring encryption on this controller, click the "Perform Initial Setup" link above.

A new screen appears.
3. Complete the following:

 - Under **Setup Type**, select **Full Setup**.
 - Under **New Password**, enter and then re-enter the Crypto Officer password in the fields provided.
 - Under **Encryption Mode**, select either:
 - **Enable and Allow Future Plaintext Volumes**: Allowing future plaintext volumes still requires authentication by the Crypto Officer or the User before a plaintext volume can be created.
 - **Enable and Disallow Future Plaintext Volumes**: This option prevents the creation of new plaintext volumes on the controller. This setting can be changed later by the Crypto Officer. Selecting this option does not prevent the migration of a set of drives with existing plaintext volumes to the controller.
 - Under **Key Management Mode**, select **Remote Key Management Mode**.
 - Enter the **Master Key** name created on the ESKM in the field provided.

4. Click **OK**.
5. A EULA screen appears. If you have read and agree to the terms of the EULA, select the check box and click Accept.

6. A summary screen appears, indicating the controller has been successfully configured for encryption use. Click Finish to continue.

7. The Encryption Manager home screen appears with updated Settings, Accounts, and Utilities options.

IMPORTANT: Hewlett Packard Enterprise recommends setting up a password recovery question and answer after initial configuration. If the Crypto Officer password is lost and a recovery question and answer have not been set, you will need to erase and reconfigure all Secure Encryption settings in order to reset the Crypto Officer password. For more information, see "Set or change the password recovery question."

Changing from Local Key Management Mode to Remote Key Management Mode

Use the steps in this procedure to change the Key Management Mode from Local Key Management Mode to Remote Key Management Mode. You do not need to back up or restore your data when performing this task.

Procedure

1. Connect iLO to the ESKM.
2. Create the Master Key on the ESKM.
3. Start HPE SSA.
4. Under Array controllers, select the controller.
5. Under Actions, click Configure.
6. From the side menu, click Encryption Manager.
7. Log in to Encryption manager.
8. Change the Key Management Mode from Local Key Management Mode to Remote Key Management Mode.
9. Provide the master key in the Master Key field.
Operations

Accessing Encryption Manager

Opening Encryption Manager

Procedure

1. Start HPE SSA. For more information, see the HPE Smart Storage Administrator user guide.
2. Select a Secure Encryption-compatible controller.
3. Click Configure.

Logging into Encryption Manager

1. Open Encryption Manager.
2. Click Encryption Login.
3. A new window appears. Select an account to log in with and enter the password in the field provided.
4. Click OK to continue.
Managing passwords

NOTE: Valid passwords must be 8 to 16 US-ASCII characters long and contain the following:

- At least one lowercase letter
- At least one uppercase letter
- At least one number
- At least one non-alphanumeric character, such as # or $

Set or change the Crypto Officer password

1. **Open Encryption Manager**.
2. **Log in as the Crypto Officer**.
3. Under **Accounts**, locate **Crypto Officer Password**. Click **Set/Change Crypto Officer Password**.
5. Click **OK**.

Set or change the password recovery question

1. **Open Encryption Manager**.
2. **Log in as the Crypto Officer**.
3. Under **Accounts**, locate **Crypto Officer Password Recovery Parameters**. Click **Set/Change Password Recovery Question**.
A new window appears.

4. Complete the following fields:
 a. **Password Recovery Question**: Enter a question to which only you know the answer.
 b. **Password Recovery Answer**: Enter the answer to the question entered above.

5. Click **OK**.

Set or change user account password

⚠️ **IMPORTANT:**
If this is the first time setting the User password, you must be logged in as the Crypto Officer.

The User account is disabled by default until the Crypto Officer sets the User account password for the first time.

To set or change the User account password:

1. **Open Encryption Manager**.
2. **Log in to the Encryption Manager**.
3. Under **Accounts**, locate **User Password**. Click **Set/Change User Password**.

4. A new window appears. Enter and re-enter the new password in the **New Password** fields.
5. Click OK.

Set or change the controller password

A controller password causes all encrypted volumes on the controller to be kept offline at startup until the controller password is entered.

The "Set/Change Password" action enables the controller password feature and sets the initial password. After a password is set, re-executing this action replaces the existing controller password with a new one. This procedure can only be performed by the Crypto Officer. The controller password cannot be changed while the controller password feature is suspended or while the controller is locked. However, the controller password can be removed by the Crypto Officer and later reset.

To set or change the controller password:

1. **Open Encryption Manager**.
2. **Log in to Encryption Manager**.
3. Under **Settings**, locate **Controller Password**. Click **Set/Change Controller Password**.

4. A new window appears. Enter and re-enter the new controller password in the **New Password** fields.
5. Click OK.

Suspending the controller password

If the controller password is suspended, then the controller does not prompt for a password at system startup, and volumes are allowed online if all keys are accessible. Once suspended, the controller password feature can be resumed without requiring a password reset.

To suspend the controller password:

1. **Open Encryption Manager**.
2. **Log in to Encryption Manager**.
3. Under Settings, locate **Controller Password**. Click **Suspend Controller Password**.
4. A new window appears, asking if you want to suspend the controller password. Click **Yes** to continue.

Resuming the controller password

Resuming a suspended controller password re-enables password prompts at system startup.

To resume the controller password:

1. **Open Encryption Manager**.
2. **Log in to Encryption Manager**.
3. Under **Settings**, locate **Controller Password**. Click **Resume Controller Password**.
4. A new window appears, asking if you want to resume the controller password. Click **Yes** to continue.

Working with keys

Changing the Master Encryption Key

1. **Open Encryption Manager**.
2. **Log in to Encryption Manager**.
3. **Under Settings, locate Master Key. Click Change Master Key**.

IMPORTANT:
Hewlett Packard Enterprise recommends that you keep a record of the Master Encryption Keys when encryption is configured in Local Mode. The local Master Encryption Key is not displayed by any available tool or firmware because it is considered a cryptographic secret by FIPS 140-2. Secure Encryption design follows the NIST architecture requirements and does not allow Hewlett Packard Enterprise to assist in the recovery of a lost Master Encryption Key.
4. A new window appears. Enter the new **Master Key** in the field provided. When using Local Key Management mode, the input can be any set of printable characters. When using Remote Key Management mode, the input must be the same name as the key name in the remote key store.

 ![Master Key](image)

5. Click **OK**.

Rekeying the Drive Encryption Keys

This procedure creates a new set of Drive Keys used for encrypting the volume keys on the controller. This task is available to all roles in the system.

To rekey the Drive Keys:

1. **Open Encryption Manager**.
2. **Log in to Encryption Manager**.
3. Under **Settings**, locate **Encrypted Physical Drive Count**. Click **Drive Key Rekey**.

 ![Settings Table]

4. A prompt appears, indicating new Drive Encryption Keys will be created for all physical drives. Click **OK** to continue.

Rescanning keys

In Remote Mode, this procedure signals the controller to retrieve all encryption keys from the ESKM. This procedure resolves potentially locked volumes that could have been locked as a result of failure to initially retrieve the associated keys.

To rescan keys:

1. **Open Encryption Manager**.
2. **Log in to Encryption Manager**.
4. A new window appears, indicating iLO will retrieve keys from the ESKM. Click OK to continue.

Enabling Encryption Key Manager Authentication

When enabled, Key Manager Authentication allows the firmware to bypass prompting the user for the controller password when it is able to contact a verified key manager.

The following encryption settings must be configured before enabling Key Manager Authentication:

- Secure Encryption must be configured to run in remote key management mode.
- **The controller password must be set.**
- **Local Key Cache must be enabled, with the "number of access attempts" count set at a value greater than 0.**
- **The Crypto Officer or an additional user must be logged in.**

To enable Key Manager Authentication:

1. **Open Encryption Manager.**
2. Under **Controller Password**, click **Enable Key Manager Authentication.**

3. A new window appears. To confirm enabling Encryption Key Manager Authentication, click **Yes.**

Volatile keys

Enabling a volatile key for the logical drive prevents the encrypted data encryption key from being stored on the physical drives. In the event of a power failure or a server reboot, the controller loses the key.

For Local Key Management Mode, there is no method available to recover the data encryption key or access the data on the logical drive.

For Remote Key Management Mode, the controller must retrieve the data encryption key from the ESKM before the data on the logical drive can be accessed.
Enabling volatile keys in Local Key Management Mode

1. Start HPE SSA. For more information, see the HPE Smart Storage Administrator user guide.
2. Select a Secure Encryption-compatible controller.
4. Select a logical drive.
6. Select Enabled or Disabled, and click OK to continue.
7. A warning window appears. Click Yes to continue.
8. A summary page appears, confirming that volatile keys are enabled. Click Finish to continue.

A banner appears over the main menu, indicating that volatile keys are enabled for specific controllers. This banner will remain until volatile keys are disabled.
Enabling volatile keys in Remote Key Management Mode

1. Start HPE SSA. For more information, see the HPE Smart Storage Administrator user guide.
2. Select a Secure Encryption-compatible controller.
4. Select a logical drive.

6. Select Enabled, and then click OK to continue.

7. A warning window appears. Click Yes to continue.
8. A summary page appears, confirming that volatile keys are enabled. Click Finish to continue.
A banner appears over the main menu, indicating that volatile keys are enabled for specific controllers. This banner will remain until volatile keys are disabled.

9. The keys are being backed up to the ESKM at this time. Click **Refresh** to update the **Logical Drive Details** summary listed on the right hand side of the screen. When the backup is complete, the summary will display **Yes** for **Data Key Backed Up**.

10. To disable **Data Key Backup**, click **Data Key Action**.
11. A new window appears. Click **OK** to continue.

12. A summary page appears. Click **Finish** to continue.

Creating a plaintext volume

IMPORTANT:
The controller only allows the creation of new plaintext volumes if it has been configured to do so by the Crypto Officer. Refer to the Encryption Manager screen to determine if plaintext volume creation is enabled on the controller.

To create a plaintext volume:
1. Start HPE SSA. For more information, see the HPE Smart Storage Administrator user guide.

2. Under Controller Devices, click on Unassigned Drives.

3. Select drives.

4. Click Create Array. A new window appears.
5. Complete the following fields:

a. **Create Plaintext Volume**: Select Yes.

b. **My Account**: Select the account to log in with.

c. **Password**: Enter the account password.

6. Complete remaining fields as necessary.
7. Click **Create Logical Drive**.

8. **Array Details, Logical Drives, Physical Drives** and **Device Path** specifications appear. Click **Finish** to complete.

Converting plaintext volumes into encrypted volumes

NOTE: In order to preserve existing data, the controller must read and rewrite the entire volume in order to complete the conversion process. Conversion may take some time to complete, especially if there is competing drive activity from the host system.

1. Open **Encryption Manager**.
2. Log in to **Encryption Manager**.
3. Under **Controller Devices**, click **Arrays**.
4. Select the plaintext volume.
5. Under **Actions**, click **Convert Plaintext Data to Encrypted Data**.

A new window appears.

Preserve Existing Data *(What’s this…?)*

- Yes. Data will be preserved but conversion will take longer
- No. Discard existing data

6. Select one of the following:
a. To preserve existing data, select Yes.

b. To discard existing data, select No. If selected, a warning prompt appears after clicking OK, confirming your selection. Click OK to continue past the warning.

7. Click OK. A new window appears, listing the Logical Drive Details, Logical Drive Acceleration Method, and Device Path details.

8. Click Finish.

Changing key management modes

1. Open Encryption Manager.

2. Log in to Encryption Manager.

 ![Settings Table]

4. A new window appears with the key management mode selected. Enter the Master Encryption Key in the field provided.

 ![New Key Management Mode]

5. Click OK.

6. A warning appears, prompting the user to record the Master Encryption Key. Click Yes to continue.
Enabling/disabling plaintext volumes

IMPORTANT:
Plaintext volumes are unencrypted. The option of allowing or disabling the creation of plaintext volumes depends on the following:

- The type of data to be stored on the plaintext volume
- The level of security you want or need in the system

Hewlett Packard Enterprise recommends that you do not enable this option for systems requiring high security or containing highly sensitive data.

To change plaintext volumes permissions after initial configuration:

1. Open Encryption Manager.
2. Log in as the Crypto Officer.
4. Do one of the following:
 a. If encryption is disabled, click Allow Plaintext Volumes.
 b. If encryption is enabled, click Disallow Plaintext Volumes.
5. A prompt appears, asking you to confirm the change. Click Yes to continue.

Enabling/disabling the firmware lock

The firmware lock prevents the updating of firmware on the controller and is disabled by default. For security purposes, Hewlett Packard Enterprise recommends enabling the firmware lock function.

To change the firmware lock setting:

1. Open Encryption Manager.
2. Log in to Encryption Manager.
4. Do one of the following:

 a. If unlocked, click Lock Firmware.

 b. If locked, click Unlock Firmware.

5. A prompt appears, asking you to confirm the change. Click Yes to proceed.

Enabling/disabling local key cache

Local Key Cache enables the user to store the keys required to decrypt the volume keys in persistent memory on the controller. When configured for Remote Key Management Mode, the controller normally retrieves the keys from the ESKM at boot time. By storing the key values in the controller, logical drive data can be encrypted and decrypted without the network presence of the ESKM.

1. **Open Encryption Manager**.
2. **Log in to Encryption Manager**.
3. Under **Settings**, locate **Local Key Cache Enabled**. Click **Set/Change Local Key Cache**.

4. Do one of the following:
• To disable, select No.
• To enable, select Yes. If you select Yes, two new fields appear.

Enable Local Key Cache (What's this...?)

- Yes
- No

Number of Access Attempts Before Deleting Local Key Cache

- 0 Valid Range: 0 (No retry) - 10 attempts

Retry Interval in Minutes (What's this...?)

- 1 Valid Range: 1 - 15 minutes

5. Complete the following fields:

IMPORTANT:
Hewlett Packard Enterprise recommends using the default settings for the number of access attempts. Only change this value if there is a concern that an unintended individual might remove the server from the environment. When the value is set to a value higher than "0", HPE Secure Encryption attempts to locate ESKM the configured number of times during boot. If all attempts fail, the local key cache is deleted prior to boot. All volumes encrypted will remain locked until the ESKM is reached and the required keys are retrieved and placed back into the local key cache.

• **Number of Access Attempts Before Deleting Local Key Cache** - A value of "0" indicates HPE Secure Encryption will not check for the presence of a key manager, and the key cache will remain present on the controller. If the value is greater than "0", HPE Secure Encryption will attempt to contact the key manager the number of attempts specified. If any attempt is successful, the encrypted logical drive(s) will be unlocked using the keys in the local key cache. If all of the attempts are unsuccessful, then all of the encrypted logical drive(s) will remain locked and the keys in the local key cache are deleted.

• **Retry Interval in Minutes** - The number of minutes between access attempts.

6. Click OK.

Importing drive sets in Local Key Management Mode

When the Master Encryption Key on an imported drive set is different from the Master Encryption Key on the receiving Smart Array Controller, the importing volumes remain offline until user intervention is taken. HPE SSA can be used to supply the Master Key name for the importing drives.

In Remote Key Management Mode, drives automatically import when the associated key is present on the ESKM. If keys are unable to be retrieved but are confirmed to be on the ESKM, it is possible they are assigned to a different group.
Importing drives with different Master Keys

Migrating drives to a non-encrypted controller results in the logical volumes associated with those drives remaining offline until encryption is enabled with the proper Master Encryption Key settings and mode for that volume.

If non-encrypted drives are migrated to an encrypting controller, the controller automatically brings the logical volumes associated with those physical drives online and makes them available for use.

To import drives with a different Master Key into a controller when using Local Key Management Mode:

1. Power down the server. For more information, see the documentation that ships with the server.
2. Attach drives. For more information, see the documentation that ships with the drives.
3. Power up the server. For more information, see the documentation that ships with the server.
4. Start HPE SSA. For more information, see the HPE Smart Storage Administrator user guide.
5. Under **Array Controller(s)**, click the controller assigned to the new drives. Red alert message indicators will appear next to it.
6. Under **Actions**, click **Configure**.
7. From the side menu, click **Encryption Manager**.
8. **Log in to Encryption Manager**.
9. Under **Utilities**, click **Import Foreign Local Key**.
10. A new screen appears. Enter the new Master Encryption Key name assigned to the drives being imported in the **Master Key** field.
11. Click **OK**.

The drives will be incorporated, unlocked, and assigned the Master Encryption Key of the receiving controller.
Maintenance

Controllers

Clearing the controller

To clear all logical drives and arrays on controllers:

1. Start HPE SSA. For more information, see the HPE Smart Storage Administrator user guide.
2. Select the controller to be cleared.
4. A new window appears, confirming your request to clear the controller's configuration. To continue, click Clear.
5. A new window appears, displaying controller settings and configuration. To continue, click Finish.

Replacing an encrypted controller

If some or all of the drives managed by the controller being replaced are encrypted, you must re-configure the replacement controller with the same settings and key management mode you used for the controller you are replacing. For more information, see the documentation that ships with the controller.

In Local Key Management Mode, you must provide the correct Master Encryption Key name that matches the one used for the attached drives.

In Remote Key Management Mode, any valid Master Encryption Key name will work, since the Master Encryption Key names are part of the drive configuration information stored on each drive.

Replacing a server while retaining the controller

If you retain the same controller and physical disks, then there are no encryption-related tasks to complete.

If Remote Key Management Mode is in use, the previous iLO configuration for key management must be applied to the new server.

For more information on configuring iLO, see "Configuring iLO."

For more information on locating the group name, see "Locating groups associated with a drive."

Preconfiguring replacement components

It is possible to configure replacement controllers ahead of time for encryption. After installing the Smart Array Controller, enable encryption on the controller. For more information, see "Configuration."

After the server is powered down, the controller can be physically removed and set aside for later use.

Flashing firmware

If the firmware lock function is enabled, the firmware lock on the controller must be unlocked before attempting to flash the controller. To disable the firmware lock function, see "Enabling/disabling the firmware lock."
Drives

Replacing a physical drive

To replace a drive, see the server maintenance and service guide.

Groups

Locating groups associated with a drive

Use one of the following methods to locate the group name associated with a drive.

- Query by drive serial number
- Query by previous server name

Query by drive serial number

1. Log in to the ESKM.
2. Click the Security tab.
The following screen appears.

4. Click **Add**.

The following screen appears.
5. Complete the following fields:
 a. Query Name
 b. Query Type
 c. Description

6. Click Next.
 The Key Policy and Configuration screen appears.

7. If you want to save this query, enter a name in the Query Name field.

8. Under Choose Keys Where, do the following:
a. Field 1: Select **Key Name** from the drop down menu.

b. Field 2: Select **Contains** from the drop down menu.

c. Field 3: Enter the serial number of one of the drives in the server.

9. If you assigned a name to this query, click **Save and Run Query**. Otherwise, click **Run Query without Saving**.

10. Click on the key. A new screen appears, listing the **Key Properties**.

11. Click **Permissions** to view the group name.

Query by previous server name

1. **Log in to the ESKM**.

2. Click the **Security** tab.
3. Under **Keys**, click **Query Keys**.

The following screen appears.
4. Click **Add**.
 The following screen appears.

5. Complete the following fields:
 a. Query Name
 b. Query Type
 c. Description

6. Click **Next**.
 The **Key Policy and Configuration** screen appears.
7. If you want to save this query, enter a name in the **Query Name** field.

8. Under **Choose Keys Where**, do the following:
 a. Field 1: Select **Custom: Server_Name** from the drop down menu.
 b. Field 2: Select **Equals** from the drop down menu.
 c. Field 3: Enter the previous server name associated with the drive.

9. If you assigned a name to this query, click **Save and Run Query**. Otherwise, click **Run Query without Saving**.

10. Click on the key. A new screen appears, listing the **Key Properties**.
11. Click the **Permissions** tab to view the group name.
Displaying log information

The event log displays events for all controllers in the system and does not differentiate between events produced by different controllers.

When operating Secure Encryption in Remote Mode, you can access the ESKM events log for information on key retrieval and exchange, including the following:

- Connection status
- Master Encryption Key retrieval
- Drive Key retrieval
- Drive Key save requests
- Drive Key deletion

To view the event log:
Procedure

1. Log in to iLO using your server's credentials.

2. From the left side panel, expand the Administration menu.

3. Click Key Manager. The Enterprise Secure Key Manager Events appears at the bottom of the screen.
Navigating away from the page and returning or clicking Test ESKM Connections refreshes the list of events.

Running queries

To run a query:

1. **Log in to the ESKM**.
2. Click the Security tab.
3. From the left side panel, expand the Keys menu and click Query Keys.
A new screen appears.

4. Under **Create Query**, complete the following:

 a. If you want to save the query for future use, fill in the following fields:
• Query Name
• Description

b. In the **Choose Keys Where** field, structure queries that combine any or all of the following criteria:

- Key Name
- Owner
- Group Name
- Algorithm
- Creation Date
- Latest Key Version Date
- Any Key Version Date
- Versioned Key
- Not Versioned Key
- Exportable
- Not Exportable
- Deletable
- Not Deletable
- Access Time
- Controller identification criteria
- Custom criteria

c. Structure the report by displaying the following columns:

- Key Name
- Owner
- Exportable
- Deletable
- Algorithm
- Creation Date
- Versioned Key
- Custom attributes

d. When you have finished structuring the query, click one of the following buttons:
• Save and Run Query
• Save Query
• Run Query without saving

The report appears with the selected criteria.
Troubleshooting

Common issues

Lost or forgotten Crypto Officer password

1. Open Encryption Manager.
2. Under Accounts, locate Crypto Officer Password. Click Recover Crypto Officer Password.

![Accounts]

A new window appears.

![Password Recovery Answer](What's this...?)

![New Password](What's this...?)

3. Do the following:
 a. Answer the security question in the Password Recovery Answer field.
 b. Enter and then re-enter a new password in the New Password fields.
4. Click OK.

Lost or forgotten controller password

The controller password is used to protect data in the event of a storage system theft. Once enabled, the controller will not unlock encrypted volumes until the correct controller password has been provided. If the controller password is lost or forgotten, the controller will remain locked and all encrypted volumes will be offline and inaccessible.

If the OS logical drive is encrypted, offline HPE SSA will be required to perform the steps below. For more information, see the HPE Smart Storage Administrator user guide.
To clear the controller password:

1. Open Encryption Manager.
2. Log in as the Crypto Officer.

4. A window appears, asking you to confirm that you want to remove the controller password. Click Yes.
5. Click on Change Master Key and enter the Master Encryption Key used for encryption. For more information, see "Changing the Master Encryption Key."
6. Enable Secure Encryption, then reboot the server.

Volumes appear online and are available.

Lost or forgotten Master Key

⚠️ CAUTION: ⚠️
Hewlett Packard Enterprise strongly recommends storing a backup of the Master Encryption Key in a secure location. In some instances it is possible that a missing key will render your data inaccessible. If operating Secure Encryption in Remote Key Management Mode, Hewlett Packard Enterprise strongly recommends that you back up the ESKM regularly.

Local mode
If operating Secure Encryption in Local Mode, securing the Master Encryption Key value is critical to accessing the encrypted logical drive data. If the controller requires replacement or if the physical drives are moved to another controller, a matching Master Key is required to gain access to the data. Master Keys are not recoverable if lost. If the Master Key is lost or forgotten, you must perform a data restore operation from the backup media to regain access to the data.

Remote mode
Locating the key using the ESKM
To locate a lost or forgotten Master Encryption Key using the ESKM:
1. **Log in to the ESKM**.

2. Click the **Security** tab.

3. From the left side panel, expand the **Keys** menu and click **Keys**.

4. The **Key and Policy Configuration page** displays a list of all keys. Scroll through the list to locate the Master Key.

5. **If you remember specific attributes about the Master Key, run a key query**.

If you cannot locate the Master Key name, it may have been accidentally deleted from the ESKM. You may be able to locate the key by using an ESKM backup.

Locating the key using iLO

iLO utilizes an event log listing recent key activity. If the lost or forgotten key was recently modified, it might appear in the event log.

To locate a lost or forgotten Master Encryption Key using iLO:
Procedure

1. Log in to iLO using your server's credentials.
2. From the left side panel, expand the Administration menu.

 Expand All
 ▶ Information
 ▶ iLO Federation
 ▶ Remote Console
 ▶ Virtual Media
 ▶ Power Management
 ▶ Network
 ▶ Remote Support
 ▶ Administration
 ▶ Firmware
 ▶ Licensing
 ▶ User Administration
 ▶ Access Settings
 ▶ Security
 ▶ Management
 ▶ Key Manager
 ▶ iLO Federation

3. Click Key Manager. The Enterprise Secure Key Manager Events appears at the bottom of the screen. Review the event log for the missing key.
Forgotten which **Master key goes with which drive**

Recovery of the Master Encryption Key name corresponding to a specific set of drives is possible when operating Secure Encryption in Remote Key Management Mode.

To recover the Master Encryption Key name:

1. **Log in to the ESKM.**
2. **Run a key query with the following search parameters:**
 a. Choose **Keys Where** drop down menu: select **Custom: Server_Name**. Two new fields appear.
 b. In the second drop down menu, select **Equals**.
 c. In the third field, enter the name of the server to be associated with the Master Encryption Key.
 d. Under **Custom Attributes**, select **Master_Key**.

Logical drives remain offline

If cryptographic information is missing, logical drives remain offline after system start. General causes include a missing, incorrect, or inaccessible key. Restoring the cryptographic information to match the attached drives results in the appropriate access to the logical drive.

Possible causes

- Encryption is not enabled.
- The matching Master Encryption Key is missing or incorrect.
- The controller password was enabled but is not entered or is incorrect.

Possible causes (Remote Mode only)
• Network connectivity issues are occurring between iLO and the ESKM.
• iLO is not configured properly.
• The Drive Keys are missing from the ESKM.
• The Drive Encryption Keys and iLO groups are mismatched.

To view a diagnostic report, see the HPE Smart Storage Administrator user guide.

Master key not exporting

This issue occurs only in Remote Key Management Mode. The problem appears as either a locked controller or as locked volumes.

Possible causes

• A network problem prevents key retrieval from the ESKM.
• Lost or incorrect iLO configuration
• Missing or incorrectly configured Master Encryption Key

Possible Resolutions

• Troubleshoot the network connection between iLO and the ESKM. For more information, see "Testing the connection between iLO and the ESKM."
• Ensure the Master Encryption Key exists. For more information, see "Locate the key using the ESKM."
• Ensure the Master Encryption Key is in the correct group. If the Master Encryption Key is incorrectly assigned, see "Placing a key in a group."

Testing the connection between iLO and the ESKM

iLO connects and manages key exchanges between the controller and ESKM. If you suspect iLO has lost its connection to the ESKM, you can test the connection in iLO.

To test the connection between iLO and the ESKM:

Procedure

1. Log into iLO using your server's credentials.
2. From the left side panel, expand the Administration menu and then click Key Manager.
The following screen appears.
3. Under **Key Manager Configuration**, click **Test ESKM Connections**:

- If iLO is connected to the ESKM, a green checkmark appears indicating the key managers are accessible.
- If the connection has been lost, you will need to re-configure iLO to communicate with the ESKM. For more information, see "Connecting iLO to ESKM."

Potential errors encountered

The following table describes errors that might be encountered when configuring or operating Secure Encryption.
<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote key manager communication failure</td>
<td>Slot X Encryption Failure – Communication issue prevents drive keys from being retrieved. Encrypted logical drives are offline. System may not boot.</td>
<td>To troubleshoot, see the Key Manager page in iLO interface.</td>
</tr>
<tr>
<td>Incorrect or missing Master Key on Remote key manager</td>
<td>Slot X Encryption Failure – Master Encryption Key is incorrect or not retrieved from ESKM. Encrypted logical drives may be offline. System may not boot.</td>
<td>Correct the problem on the ESKM.</td>
</tr>
<tr>
<td>Volume Key decryption failure</td>
<td>Invalid Drive Encryption Keys on ESKM. Encrypted logical drives may be offline. System may not boot.</td>
<td>Restore the correct version of the Drive Encryption Key on the ESKM.</td>
</tr>
<tr>
<td>Unable to establish communication with controller</td>
<td>Communication issue prevents keys from being retrieved. Dependent encrypted logical drives are offline. System may not boot.</td>
<td>Reset the controller by rebooting the server.</td>
</tr>
<tr>
<td>Missing local Master Key</td>
<td>Imported encrypted logical drives are offline; the matching local Master Encryption Key is required. System may not boot.</td>
<td>Use HPE Smart Storage Administrator to enter the local Master Encryption Key.</td>
</tr>
<tr>
<td>Controller password failure</td>
<td>All encrypted local drives are offline due to failure to enter proper controller password.</td>
<td>Reboot the server and enter the proper controller password, or unlock the controller using HPE Smart Storage Administrator.</td>
</tr>
<tr>
<td>Controller encryption not enabled</td>
<td>Encrypted logical drives are present but encryption is not yet enabled. Encrypted logical drives are offline.</td>
<td>Use HPE Smart Storage Administrator to enable encryption.</td>
</tr>
<tr>
<td>Encryption parameters not set</td>
<td>Encryption is enabled for the controller but the Master Encryption Key name is not set.</td>
<td>Use Encryption Manager to set the Master Key name for the controller and reboot.</td>
</tr>
<tr>
<td>Controller/logical drive encryption type mismatch</td>
<td>Key management mode mismatch between controller and drives. Dependent encrypted drives offline.</td>
<td>Use Encryption Manager to match key management modes. For more information, see "Importing drives with different Master Keys".</td>
</tr>
<tr>
<td>Encryption failure - unsupported system ROM detected</td>
<td>Unsupported system ROM detected. Encrypted logical drives may be offline. System may not boot.</td>
<td>Update the system ROM to a version supporting encryption.</td>
</tr>
<tr>
<td>Encrypted logical drives on non-encrypting controller</td>
<td>Encrypted logical drives are offline. Encryption feature is not available on this controller.</td>
<td>Move drives to a controller with encryption support or delete the logical drives.</td>
</tr>
</tbody>
</table>

Table Continued
Clearing the encryption configuration

⚠️ **IMPORTANT:** Clearing all encryption settings clears all secrets, keys, and passwords from the controller. Secure Encryption will be returned to a factory-new state.

To clear all encryption settings:

1. **Clear the controller.**

 ⚠️ **IMPORTANT:** Clearing the controller is not necessary if there are no encrypted drives present or if HPE Smart Storage Administrator is operating in an offline mode.

2. **Log in to Encryption Manager.**

3. Under **Utilities**, click **Clear Encryption Configuration**.

4. A prompt appears, indicating all encryption settings will be cleared from the controller. To continue, click **Clear**.

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption failure - unsupported iLO firmware detected</td>
<td>Unsupported iLO firmware detected. Encrypted drive may be offline. System may not boot.</td>
<td>Update iLO firmware to a version supporting encryption.</td>
</tr>
<tr>
<td>NVRAM failure</td>
<td>Non-volatile storage corrupted. Critical Security Parameters erased per policy. Encrypted drives are offline.</td>
<td>Use HPE Smart Storage Administrator to reestablish CSPs.</td>
</tr>
<tr>
<td>Encryption engine self-test failure</td>
<td>Encryption engine hardware failure. Encrypted logical drives are offline until the problem is corrected.</td>
<td>Replace the controller to bring encrypted drives online.</td>
</tr>
<tr>
<td>Unable to create a plaintext volume</td>
<td>While logged into the system, you are unable to create a plaintext volume.</td>
<td>Verify that Encryption Manager has been set to allow the creation of future plaintext volumes.</td>
</tr>
</tbody>
</table>
Support and other resources

Accessing Hewlett Packard Enterprise Support

- For live assistance, go to the Contact Hewlett Packard Enterprise Worldwide website:

 http://www.hpe.com/assistance

- To access documentation and support services, go to the Hewlett Packard Enterprise Support Center website:

 http://www.hpe.com/support/hpesc

Information to collect

- Technical support registration number (if applicable)
- Product name, model or version, and serial number
- Operating system name and version
- Firmware version
- Error messages
- Product-specific reports and logs
- Add-on products or components
- Third-party products or components

Accessing updates

- Some software products provide a mechanism for accessing software updates through the product interface. Review your product documentation to identify the recommended software update method.

- To download product updates:

 Hewlett Packard Enterprise Support Center

 www.hpe.com/support/hpesc

 Hewlett Packard Enterprise Support Center: Software downloads

 www.hpe.com/support/downloads

 Software Depot

 www.hpe.com/support/softwaredepot

- To subscribe to eNewsletters and alerts:

 www.hpe.com/support/e-updates

- To view and update your entitlements, and to link your contracts and warranties with your profile, go to the Hewlett Packard Enterprise Support Center More Information on Access to Support Materials page:
IMPORTANT:
Access to some updates might require product entitlement when accessed through the Hewlett Packard Enterprise Support Center. You must have an HPE Passport set up with relevant entitlements.

Customer self repair

Hewlett Packard Enterprise customer self repair (CSR) programs allow you to repair your product. If a CSR part needs to be replaced, it will be shipped directly to you so that you can install it at your convenience. Some parts do not qualify for CSR. Your Hewlett Packard Enterprise authorized service provider will determine whether a repair can be accomplished by CSR.

For more information about CSR, contact your local service provider or go to the CSR website:
http://www.hpe.com/support/selfrepair

Remote support

Remote support is available with supported devices as part of your warranty or contractual support agreement. It provides intelligent event diagnosis, and automatic, secure submission of hardware event notifications to Hewlett Packard Enterprise, which will initiate a fast and accurate resolution based on your product's service level. Hewlett Packard Enterprise strongly recommends that you register your device for remote support.

If your product includes additional remote support details, use search to locate that information.

Remote support and Proactive Care information
HP Get Connected
www.hpe.com/services/getconnected
HP Proactive Care services
www.hpe.com/services/proactivecare
HP Proactive Care service: Supported products list
www.hpe.com/services/proactivecaresupportedproducts
HP Proactive Care advanced service: Supported products list
www.hpe.com/services/proactivecareadvancedsupportedproducts

Proactive Care customer information
Proactive Care central
www.hpe.com/services/proactivecarecentral
Proactive Care service activation
www.hpe.com/services/proactivecarecentralgetstarted

Warranty information

To view the warranty for your product or to view the Safety and Compliance Information for Server, Storage, Power, Networking, and Rack Products reference document, go to the Enterprise Safety and Compliance website:

www.hpe.com/support/Safety-Compliance-EnterpriseProducts
Regulatory information

To view the regulatory information for your product, view the Safety and Compliance Information for Server, Storage, Power, Networking, and Rack Products, available at the Hewlett Packard Enterprise Support Center:

www.hpe.com/support/Safety-Compliance-EnterpriseProducts

Additional regulatory information

Hewlett Packard Enterprise is committed to providing our customers with information about the chemical substances in our products as needed to comply with legal requirements such as REACH (Regulation EC No 1907/2006 of the European Parliament and the Council). A chemical information report for this product can be found at:

www.hpe.com/info/reach

For Hewlett Packard Enterprise product environmental and safety information and compliance data, including RoHS and REACH, see:

www.hpe.com/info/ecodata

For Hewlett Packard Enterprise environmental information, including company programs, product recycling, and energy efficiency, see:

www.hpe.com/info/environment

Documentation feedback

Hewlett Packard Enterprise is committed to providing documentation that meets your needs. To help us improve the documentation, send any errors, suggestions, or comments to Documentation Feedback (docsfeedback@hpe.com). When submitting your feedback, include the document title, part number, edition, and publication date located on the front cover of the document. For online help content, include the product name, product version, help edition, and publication date located on the legal notices page.
Encryption algorithms

In keeping with the encryption standards outlined in **FIPS 140-2**, controllers utilizing Secure Encryption are designed to meet FIPS-140-2 Level 2 requirements by implementing both physical security and cryptographic methods in protecting data-at-rest. Specifically, Secure Encryption satisfies the cryptographic requirements established in FIPS 140-2 by using NIST-approved algorithms in protecting both data and encryption keys. For more information, see the Cryptographic Algorithm Validation Program [website](#).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTS-AES 256-bit</td>
<td>The XTS algorithm is used to encrypt data on the drive platter as described in NIST special publication SP 800-38E.</td>
</tr>
<tr>
<td>AES-ECB</td>
<td>The AES algorithm is used to perform symmetric key encryption.</td>
</tr>
<tr>
<td>SHA-256</td>
<td>The SHA secure hashing algorithms are described in FIPS 180-4.</td>
</tr>
<tr>
<td>HMAC</td>
<td>The HMAC algorithm is described in the FIPS 198-1 standard.</td>
</tr>
<tr>
<td>PBKDF2</td>
<td>The PBKDF2 algorithm derives cryptographic keying material from user-provided passwords. The algorithm is described in NIST special publication SP 800-132.</td>
</tr>
<tr>
<td>DRBG</td>
<td>An implementation of the SP800-90A algorithm is used to produce random bit sequences.</td>
</tr>
</tbody>
</table>
Glossary

ACU
Array Configuration Utility

Controller key
A key created by the controller and permanently saved to the Remote Key Manager after being wrapped by the Master Encryption Key. This key is used on a temporary basis to alleviate potential bottlenecks to the Remote Key Manager during volume creation/change events. Use of a Controller Key is on a temporary basis only and is ultimately transitioned via a rekey operation to the appropriate Drive Encryption Key.

Controller-secured region
The section of a device where data and Critical Security Parameters can exist in an unencrypted format. This boundary must be secured against tampering as acquiring this sensitive data may result in unauthorized access to data.

Critical Security Parameters (CSPs)
An industry standard term referring to security related information such as keys, passwords, and so forth, whose disclosure would compromise an encrypted system.

Crypto officer
Personnel who have permission to access the full range of encryption functions available on the controller. This includes turning encryption on and off, resetting keys, importing Master Encryption Keys, and so forth.

Drive array
The group of physical drives containing a logical volume.

Drive encryption key
Key generated by the Smart Array controller for each physical drive that contains at least one encrypted logical drive. The Drive Encryption Key for each physical drive is used to encrypt (wrap) the Volume Encryption Keys for all of the logical drives resident on that physical drive.

Drive key caching
In Remote mode, the Drive Encryption Keys are typically stored on the Remote Key Manager. However, it is possible to enable the controller to cache all of these Drive Encryption Keys necessary to decrypt attached logical drives within the controller-secured region. This option is available to the user through HPE SSA.

Encrypted data
Data that has been encrypted through the use of an encryption key.

ESKM
Enterprise Secure Key Manager

FIPS
Federal Information Processing Standard

HIPAA
Health Insurance Portability and Accountability Act

HITECH
Health Information Technology for Economic and Clinical Health
Local Master Encryption Key
The equivalent of a Master Encryption Key in Local mode. The Local Master Encryption Key name is stored in non-volatile memory within the controller-secured region and used to generate a Local Master Encryption Key for wrapping the Drive Encryption Keys.

Master Encryption Key
A two-part key established on the Remote Key Manager. This key consists of both a name and a value. The name consists of a maximum of 64 characters and is used to uniquely identify this key to all controllers within a given Security Domain. The Master Encryption Key value is a 256-bit quantity used by controllers to wrap Drive Encryption and Controller Keys for secure storage on the controller and import into the Remote Key Manager.

NIST
National Institute of Standards and Technology

NVRAM
nonvolatile memory

PCI-DSS
Payment Card Industry Data Security Standard

Plaintext
Data in unencrypted form.

Remote Key Manager
A server used to store, backup and retrieve keys for a group of controllers in a data center.

Volume encryption key
The key used in conjunction with hardware-based algorithms to perform the encryption of data resident on logical volumes.